#A place for code to be called from C-code
# that implements more complicated stuff.
import re
import sys
#from _mx_datetime_parser import *
if (sys.byteorder == 'little'):
_nbo = '<'
else:
_nbo = '>'
def _makenames_list(adict):
from multiarray import dtype
allfields = []
fnames = adict.keys()
for fname in fnames:
obj = adict[fname]
n = len(obj)
if not isinstance(obj, tuple) or n not in [2,3]:
raise ValueError, "entry not a 2- or 3- tuple"
if (n > 2) and (obj[2] == fname):
continue
num = int(obj[1])
if (num < 0):
raise ValueError, "invalid offset."
format = dtype(obj[0])
if (format.itemsize == 0):
raise ValueError, "all itemsizes must be fixed."
if (n > 2):
title = obj[2]
else:
title = None
allfields.append((fname, format, num, title))
# sort by offsets
allfields.sort(lambda x,y: cmp(x[2],y[2]))
names = [x[0] for x in allfields]
formats = [x[1] for x in allfields]
offsets = [x[2] for x in allfields]
titles = [x[3] for x in allfields]
return names, formats, offsets, titles
# Called in PyArray_DescrConverter function when
# a dictionary without "names" and "formats"
# fields is used as a data-type descriptor.
def _usefields(adict, align):
from multiarray import dtype
try:
names = adict[-1]
except KeyError:
names = None
if names is None:
names, formats, offsets, titles = _makenames_list(adict)
else:
formats = []
offsets = []
titles = []
for name in names:
res = adict[name]
formats.append(res[0])
offsets.append(res[1])
if (len(res) > 2):
titles.append(res[2])
else:
titles.append(None)
return dtype({"names" : names,
"formats" : formats,
"offsets" : offsets,
"titles" : titles}, align)
# construct an array_protocol descriptor list
# from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
# a descriptor that has no fields and then return
# a simple typestring
def _array_descr(descriptor):
from multiarray import METADATA_DTSTR
fields = descriptor.fields
if fields is None:
subdtype = descriptor.subdtype
if subdtype is None:
if descriptor.metadata is None:
return descriptor.str
else:
new = descriptor.metadata.copy()
# Eliminate any key related to internal implementation
_ = new.pop(METADATA_DTSTR, None)
return (descriptor.str, new)
else:
return (_array_descr(subdtype[0]), subdtype[1])
names = descriptor.names
ordered_fields = [fields[x] + (x,) for x in names]
result = []
offset = 0
for field in ordered_fields:
if field[1] > offset:
num = field[1] - offset
result.append(('','|V%d' % num))
offset += num
if len(field) > 3:
name = (field[2],field[3])
else:
name = field[2]
if field[0].subdtype:
tup = (name, _array_descr(field[0].subdtype[0]),
field[0].subdtype[1])
else:
tup = (name, _array_descr(field[0]))
offset += field[0].itemsize
result.append(tup)
return result
# Build a new array from the information in a pickle.
# Note that the name numpy.core._internal._reconstruct is embedded in
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibilty.
def _reconstruct(subtype, shape, dtype):
from multiarray import ndarray
return ndarray.__new__(subtype, shape, dtype)
# format_re and _split were taken from numarray by J. Todd Miller
def _split(input):
"""Split the input formats string into field formats without splitting
the tuple used to specify multi-dimensional arrays."""
newlist = []
hold = ''
listinput = input.split(',')
for element in listinput:
if hold != '':
item = hold + ',' + element
else:
item = element
left = item.count('(')
right = item.count(')')
# if the parenthesis is not balanced, hold the string
if left > right :
hold = item
# when balanced, append to the output list and reset the hold
elif left == right:
newlist.append(item.strip())
hold = ''
# too many close parenthesis is unacceptable
else:
raise SyntaxError, item
# if there is string left over in hold
if hold != '':
raise SyntaxError, hold
return newlist
format_datetime = re.compile(r"""(?P