ELF>`@P@8@İİ ȰȰ$Ȱ$@Z 88$8$$$Ptd%%%QtdGNU5UaѻǤZW55 PT$!"B H !!0I@ "P$@ % ( AA(T0 U$) AP R A }-      !"#&'(+,-./23679=@ADIJMNRSUVYZ[]^_`abcehi?Ԍܽê1;`RK%P_`R&K%#H JΥ{Ԧ({7 2JԦ5y;> /]J% Ԧ(2JƦλ'ny5]U'ny}(fB}˥K%UD} (lB}y_:ayZDqXҁ*U,燖_9H<ţyҁ_AayGV?H <LO g   PT U{ Zs< X 0qb ~ = "]5n F /NC bY   oC-< 8  L l Hn y    Q?P _ O    _8+|s  1  m x 1<  V&ZE q |  w s D   0  "e     0I  Q w  J  \ f     L  P}  @  Ji  01 @ _ P fx   P      p    n,  +   p  p  M   `  #<  m    p n  0g    [  { B  p  7"  `)      V      @OB    U  p  `   G  `(u    +j   P$  @W .F    m@  pO p<  6  = -  {#  ^  }  `'  `    ' s    pK    S  P4    `f   P: e  `5  @  `8  `    `} P  P   H %  EK  -   A   @   1\  )   ` 0T  [  P$  o R 0H        s @      h?  0 O  0$% u 0 + @   i9 P  P 4  __gmon_start___init_fini__cxa_finalize_Jv_RegisterClasses_Py_NoneStructPyString_FromStringPyInt_FromLongPyList_NewPyMem_MallocPyString_FromStringAndSizePyMem_FreePyString_FromFormatPyString_ConcatAndDelPyExc_ValueErrorPyErr_SetStringPyObject_CallMethodPyErr_OccurredPyExc_TypeErrorPyDict_GetItemPyCObject_AsVoidPtrPyErr_FormatPyErr_NoMemorymemcpyfree__sprintf_chk__stack_chk_failPyObject_InitstrcpyPyMem_ReallocPyGILState_EnsurePyOS_snprintfPyGILState_ReleasePyExc_RuntimeWarningPyErr_WarnExPy_BuildValuePyObject_CallObjectstderr__fprintf_chkPyExc_FloatingPointErrorPyExc_NameErrorfetestexceptfeclearexceptPyInt_AsLongPyCallable_CheckPyObject_GetAttrStringPyThreadState_GetDictPyEval_GetBuiltinsPyString_InternFromString__memcpy_chkPyExc_RuntimeErrormallocmemsetPyArg_ParseTupleAndKeywordsPyType_IsSubtypePyExc_IndexErrorPyEval_RestoreThreadPyEval_SaveThreadPyErr_ClearmemmovePyTuple_NewPyEval_CallObjectWithKeywordsPyTuple_SizePyObject_HasAttrStringstrcmpPyFloat_TypePyComplex_TypePyBool_TypePyObject_CallFunctionPyDict_NextPyString_AsStringPyErr_ExceptionMatchesPyObject_CallFunctionObjArgs_Py_NotImplementedStructPySequence_SizePySequence_GetItemPyLong_FromLongLongPyNumber_AddPyCObject_FromVoidPtrPyDict_SetItemPyDict_NewPyArg_ParseTuplePyList_TypePyString_AsStringAndSizenpy_atan2fnpy_atan2npy_atan2lPyNumber_Dividenpy_fabsfnpy_fabsnpy_fabslnpy_floorfnpy_floornpy_floorlnpy_fmodfnpy_fmodnpy_fmodlnpy_hypotfnpy_hypotnpy_hypotlnpy_logfnpy_lognpy_loglPyNumber_Multiplynpy_rintfnpy_rintnpy_rintlnpy_expfnpy_cosfnpy_sinfnpy_expnpy_cosnpy_sinnpy_explnpy_coslnpy_sinlnpy_sinhfnpy_coshfnpy_sinhnpy_coshnpy_sinhlnpy_coshlnpy_spacinglnpy_spacingnpy_spacingfPyObject_ComparePyObject_RichCompareBoolnpy_nextafterlnpy_nextafternpy_nextafterfnpy_modflnpy_modfnpy_modffnpy_copysignlnpy_copysignnpy_copysignfferaiseexceptnpy_csqrtlnpy_csqrtnpy_csqrtfPyNumber_Powernpy_cpowlnpy_cpownpy_cpowfnpy_cloglnpy_clognpy_clogfPyObject_Cmpnpy_cexplnpy_cexpnpy_cexpfldexplldexpldexpffrexplfrexpfrexpfinitumathPy_InitModule4_64PyImport_ImportModulePyCObject_TypePyType_ReadyPyModule_GetDictPyUFunc_APIPyExc_ImportErrorPyDict_SetItemStringPyNumber_Absolutenpy_acosfnpy_acosnpy_acoslnpy_acoshfnpy_acoshnpy_acoshlnpy_asinfnpy_asinnpy_asinlnpy_asinhfnpy_asinhnpy_asinhlnpy_atanfnpy_atannpy_atanlnpy_atanhfnpy_atanhnpy_atanhlPyNumber_AndPyNumber_OrPyNumber_Xornpy_ceilfnpy_ceilnpy_ceillnpy_deg2radfnpy_deg2radnpy_rad2degnpy_deg2radlnpy_rad2degfnpy_rad2deglnpy_exp2fnpy_exp2npy_exp2lnpy_expm1fnpy_expm1npy_expm1lPyNumber_FloorDividePyNumber_InvertPyNumber_Lshiftnpy_log10fnpy_log10npy_log10lnpy_log1pfnpy_log1pnpy_log1plnpy_log2fnpy_log2npy_log2lnpy_logaddexpfnpy_logaddexpnpy_logaddexplnpy_logaddexp2fnpy_logaddexp2npy_logaddexp2lPyNumber_Negativenpy_powfnpy_pownpy_powlPyNumber_RemainderPyNumber_Rshiftnpy_sqrtfnpy_sqrtnpy_sqrtlPyNumber_Subtractnpy_tanfnpy_tannpy_tanlnpy_tanhfnpy_tanhnpy_tanhlPyNumber_TrueDividenpy_truncfnpy_truncnpy_trunclPyFloat_FromDoublePyModule_AddIntConstantPyModule_AddStringConstantPyModule_AddObjectPyDict_GetItemStringnpy_log2_1pfnpy_exp2_m1fnpy_log2_1pnpy_exp2_m1npy_log2_1plnpy_exp2_m1l_next_nextf_nextlnpy_csinlnpy_ccoslnpy_cabslnpy_carglnpy_csinnpy_ccosnpy_cabsnpy_cargnpy_csinfnpy_ccosfnpy_cabsfnpy_cargflibm.so.6libpython2.6.so.1.0libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.4GLIBC_2.3.4GLIBC_2.2.5 @ii  ti  ui   ui  $$$ $P!($!0$0$$$$А$ $$$$0$$`$$$${$$$p $`($0$ 8$@$pH$zP$PzX$y`$0h$@p$x$$$$p$$q$` $pu$P@$H$P$ $$$`$h$l p$t x$y $ $$t $y $ $ $P$ $ $ ($`$0$P$ $$$$P$$`$ $0$@0$;$0F$PQ$p%$%$P& $`($0$08$@$ H$P$X$`$h$p$'x$p1$@<$G$`R$]$i$[0$bp$j$q$y$P$`$h$p$x$$$$$$$$($`$@$$@$$0$@$p$p$$) $ ($0$P8$@$@H$P$X$`$h$0p$0*$$$0$$ $$$$$$&$:$E$Q$Y$Pe$np$^$e$$$S$ S$@R$Q $P($0P0$@O8$N@$MH$MP$P3X$ >`$`Ih$p$Px$$;$EP$x$$$S$ S$@R$Q$P$0P$@O$N$M$M$ $ $"$$$p!@$H$P$X$p`$h$0p$@x$ $$$$/$@9$PD$O$@\$g$$$@$$ $p$$0  $0($P$0$P/8$9@$DH$OP$\X$`h$pL$K$0K$J$I$PI$H$H$pG$Fh$$$$$$$$p$$$$$&$$$$ $p($0$8$@$H$*$ $$$*P$0`$h$`p$x$`$$0$@$ $$"$-$5$@$K$ V$`a$$@$$@ $($00$@8$p@$pH$P$&X$6`$Ah$`Mp$Wx$c$`$$0$$ $$$0 $0$P#$P.$5$@$PL$V$a@$ H$P$X$`$`h$p$x$p $p$#$.$`6$`A$L$0W$pb$$$$p$$0$@$  $($$0$/8$`8@$pCH$NP$[X$f$$$@$$ $p$$0 $0$P$$P/$8$C$0O$[$ g $($0$p8$@$`H$P$X$0`$0h$Pp$P(x$2$=$H$ S$@^$i$$$p$$`$$$0$0$P$P&$`; $F($Q`$h$p$px$$`$$$0$ $P$$$:$E$P$Y$e$@Z$Y$0Y$X $ X($W0$W8$V@$UH$T$$$p$$p$$`$p$$@ $($`%0$`:8$pE@$PH$P$PX$$F$pE$D$D$PC$B$A$@A$p@$?$ #$#$$$0$$0$ $($ 0$P 8$P@$p H$p+$$m$tP$`$0h$p$0x$$ $0$`$$$ %$ :$0E$PP$PY$d$n$ $`$$` $($P0$`8$@$H$P$'X$2`$<h$ Hp$Rx$]$Pi$|$ $ ($0$8$p@$H$P$ X$`$$h$/p$P3x$ >$`I$$P$$$$p$$$P?$>$@>$P$$P$$@$$$ $$!$,$3 $>($J0$PU8$`@$@lH$:`$h$`p$x$`$$0$@$ $$!$,$5$@$@K$S$^$j$ :$`$$$ $($p0$8$ @$H$"P$-X$P5`$@@h$Kp$Tx$0_$j$9$7$B$@N$X$Pd$0n$7$B$M$X$c$m $@7($@B0$M8$0X@$pcH$@m`$h$p$Px$$@$$$0 $0$P"$P-$4$?$J$pT$_$ k$ 9$ $ $$ $($0$8$ @$H$"P$-X$4`$?h$Kp$Tx$`$k$8 $J$V`$b$m$=$@= $<0$0<8$;@$ ;`$h$ p$x$ $$$$@ $@$`!$`,$@4$ ?$`J$U$`$l$ 8$$`$$P $($0$8$@$1H$0P$;X$F`$Qh$@Zp$ex$0o$ 7$8$ C$N$6$`6$5$@$$0$$0$ $($ @$H$`$h$$ $$ $ w$ $s$ $s8$ @$s`$ h$s$ $s$$Ps$ $`s$ $ s$$$$$$ $ $($A0$8$@$H$ P$iX$!`$h$p$(x$$ $$ $$$h$-$2$)ȳ$*г$6س$$$.$/$$$/$$ $3($40$8$6@$8H$dP$NX$<`$Vh$4p$x$.$$D$F$L$S$=$$M$0ȴ$Oд$Wش$X$Z$$$$^$_$1$a$ $7($0$8$@${H$|P$X$`$h$p$>x$E$$:$,$'$$ $$&$ȵ$е$Lص$$;$ $$$$$8$ $`($)0$8$@$+H$P$X$`$<h$p$*x$$?$$5$$$F$R$ $ȶ$@ж$Gض$Z$$]$$H$$$0$8$@$H$P$X$`$h$p$x$ $ $ $ $$$$$$ȷ$з$ط$$$$$$$$$ $($^0$8$@$H$!P$"X$#`$#h$$p$%x$$$h$c$&$'$e$($+$6ȸ$,и$-ظ$$0$1$$2$/$$"$ $($50$8$7@$9H$:P$;X$`$Nh$=p$>x$?$@$A$.$B$C$D$$$Eȹ$Gй$Hع$I$J$K$M$S$_$N$O$P $Q($0$M8$R@$SH$TP$UX$O`$Vh$Wp$Ux$Y$[$J$\$]$^$1$`$a$bȺ$Yк$cغ$d$e$f$$g$h$i$j$k $l($m0$98$n@$H$oP$pX$q`$rh$p$sx$t$u$v$K$w$x$y$$z$}Ȼ$л$~ػ$$$$$$$$$ $,($0$8$@$H$P$X$a`$h$p$x$$$ $$$$$$\$ȼ$м$ؼ$%$$$$8$$$f$ $($0$)8$@$H$P$X$`$h$p$x$$$$$$$$?$$Ƚ$н$ؽ$$5$$$$F$$$ $ ($0$8$@$H$P$bX$P`$h$p$x$$G$$T$$C$X$$$Ⱦ$о$ؾ$$$$$$$$$ $g($0$8$H@$H$P$X$`$H2_H5B$%D$@%B$h%:$h%2$h%*$h%"$h%$h%$h% $hp%$h`%$h P%$h @%$h 0%$h %$h %$h%$h%$h%$h%$h%$h%$h%$h%$h%$hp%$h`%z$hP%r$h@%j$h0%b$h %Z$h%R$h%J$h%B$h %:$h!%2$h"%*$h#%"$h$%$h%%$h&% $h'p%$h(`%$h)P%$h*@%$h+0%$h, %$h-%$h.%$h/%$h0%$h1%$h2%$h3%$h4%$h5%$h6%$h7p%$h8`%z$h9P%r$h:@%j$h;0%b$h< %Z$h=%R$h>%J$h?%B$h@%:$hA%2$hB%*$hC%"$hD%$hE%$hF% $hGp%$hH`%$hIP%$hJ@%$hK0%$hL %$hM%$hN%$hO%$hP%$hQ%$hR%$hS%$hT%$hU%$hV%$hWp%$hX`%z$hYP%r$hZ@%j$h[0%b$h\ %Z$h]%R$h^%J$h_%B$h`%:$ha%2$hb%*$hc%"$hd%$he%$hf% $hgp%$hh`%$hiP%$hj@%$hk0%$hl %$hm%$hn%$ho%$hp%$hq%$hr%$hs%$ht%$hu%$hv%$hwp%$hx`%z$hyP%r$hz@%j$h{0%b$h| %Z$h}%R$h~%J$h%B$h%:$h%2$h%*$h%"$h%$h%$h% $hp%$h`%$hP%$h@%$h0%$h %$h%$h%$h%$h%$h%$h%$h%$h%$h%$h%$hp%$h`%z$hP%r$h@%j$h0%b$h %Z$h%R$h%J$h%B$h%:$h%2$h%*$h%"$h%$h%$h% $hp%$h`%$hP%$h@%$h0%$h %$h%$h%$h%$h%$h%$h%$h%$h%$h%$h%$hp%$h`%z$hP%r$h@%j$h0%b$h %Z$h%R$h%J$h%B$h%:$h%2$h%*$h%"$h%$h%$h% $hp%$h`%$hP%$h@%$h0%$h %$h%$h%$h%$h%$h%$h%$h%$h%$h%$h%$hp%$h`%z$hP%r$h@%j$h0%b$h %Z$h%R$h%J$h%B$h%:$h%2$h%*$h%"$h%$h%$h% $hp%$h`% $hP% $h@% $h0% $h % $h% $h% $h% $h% $h% $h% $h% $h% $h% $h% $hp% $h`%z $hP%r $h@%j $h0%b $h %Z $h%R $h%J $h%B $h%: $h%2 $h%* $h%" $h% $h% $hHH $HtHÐU=>$HATSubH=`$t H=#"H3#L%$#H>$L)HHH9s DHH>$AH>$H9rn>$[A\fH=#UHtHk$HtH=#@ÐAWAVAUATUSHL.H/HL$H_L:LrM~#E1@IELT$LM9H[]A\A]A^A_DAWAVAUATUSHL.H/HL$H_L:LrM~.E1@EILZT$ffZLM9H[]A\A]A^A_f.AWAVAUATUSH(HL6HL$L'HoH_HD$HBMLzHD$~.E1fIMA$T$LLd$Hl$M9H([]A\A]A^A_AWAVAUATUSH(HL6HL$L'HoH_HD$HBMLzHD$~HLZLRH~.1A8A9@HI1M؈LH9u[ÐSLLHOHGHMLZLR~01A8@ǀ9@@8HILLL9u[ffffff.SLLHOHGHMLZLR~01A8@ǀ9@@8HILLL9u[ffffff.SLLHOHGHMLZLR~01A8@ǀ9@@8HILLL9u[ffffff.SLLHOHGHMLZLR~01A8@ǀ9@@8HILLL9u[ffffff.SHLGL9tSLLRLHHZM~21f.?@19HL!HAML9u[LHBI9tMIMMuLH_HzM~C; t4I1I!HJ4 €<>@@ t HI9ވ[f.SHHOH9tCLLJLHLZM~(1f.7 HLLLL9u[fL LBM9tMMMMuLHOHzM~19u0u,I1IfDHJ4 <>uHI91҈[úUSLLLGHOH*MHZLZ~?1 @IILA9@A8@u @u!HL9u[]fffff.SLLHOHGHMLZLR~319@A8@@8CHI@0LLL9u[fff.SLLHOHGHMLZLR~319@A8@@8FHI@0LLL9u[fff.H6HHGLHzH~19HLHH9ufH6HHGLHzH~19HLHH9ufHHGHzH~1fDHHH9uHHGHzH~1fDHHH9uH6LHOL HzH~"1AHMHH9ufDHHGH>L LBH~/ Z_11f(HL*^,@0LH9ufHHGH>L LBH~11HL@0LH9ufH6LHOL HzH~!1AHM؈HH9uH6HHGLHzH~19HLHH9ufH6LHOL HzH~!1AHMЈHH9uHLGL9tLLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufSLLGHOH>HLZLRH~01A8@1A9HI!M؈LH9u[ffffff.SLHOHGH>LLRLJH~&11A HMLLH9u[fUSLLLGHOH*MHZLZ~B1 @IILA0A9@u @u@@@!HL9u[]ff.SLLHGHOHMLZLR~+1A08@8MHI@1LLL9u[@SLLHGHOHMLZLR~+1A08@8NHI@1LLL9u[@LHOHGH>LLRLJH~+1A0HM*1L*^LH9uDHHGHzH~1fDHHH9uH6LHOL HzH~"1AHMHH9ufDHHGH>L LBH~/ T11f(HL*^,@0LH9ufHHGH>L LBH~11HL@0LH9ufH6LHOL HzH~!1AHM؈HH9uH6HHGLHzH~19HLHH9ufH6LHOL HzH~!1AHMЈHH9uHLGL9tLLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufLHOHGH>LLRLJH~1A0@:1HMLLH9ufSLLGHOH>HLZLRH~01A8@1A9HI!M؈LH9u[ffffff.SLHOHGH>LLRLJH~&11A HMLLH9u[fUSLLLGHOH*MHZLZ~B1 @IILA0A9@u @u@@@!HL9u[]ff.SLLHGHOHMLZLR~+1A08@8CHI@1LLL9u[@SLLHGHOHMLZLR~+1A08@8FHI@1LLL9u[@LHOHGH>LLRLJH~+1A0HM*1L*^LH9uDHHGH>L LBH~11HL@0LH9ufLHOH>LLJH~(1AHMЉ1)LH9uH6HHGLHzH~19HLHH9ufLHOH>LLJH~<1fDHH9t'MLA0@@HH9ufff.HHGHzH~1fDHfHH9uDH6LHOL HzH~#1AHMfHH9uDHHGH>L LBH~/ ZI11f(HL*^,f0LH9ufHHGH>L LBH~11HLf0LH9ufH6LHOL HzH~"1AHMfHH9ufDH6HHGLHzH~ 1f9HLHH9uH6LHOL HzH~"1AHMfHH9ufDHLGL9tDLLJH6HLZH~!1HLfLfAMH9uf.L HBI9tMIMMuH6LBHH~1HfLH9ufDHLGL9tDLLJH6HLZH~!1HLf+LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf+LH9ufDHLGL9tDLLJH6HLZH~"1HLfLfAMH9ufL HBI9tMIMMuH6LBHH~1HfLH9uf@HLGL9tDLLJH6HLZH~!1HLf#LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf#LH9ufDHLGL9tDLLJH6HLZH~!1HLf LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf LH9ufDHLGL9tDLLJH6HLZH~!1HLf3LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf3LH9ufDSLLOM9tKLLRH6HHZH~+1f.AHMHfAMH9u[LHBI9tMIMMuH6H_HzAH~1fD HHH9ufA[fDSLLOM9tKLLRH6HHZH~+1f.AHMHfAMH9u[LHBI9tMIMMuH6H_HzAH~1fD HHH9ufA[fDLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufSLLGHOH>HLZLRH~21fA8@1fA9HI!M؈LH9u[ffff.LHOHGH>LLRLJH~11fA 0HMLLH9ufUSLLLGHOH*MHZLZ~B1 @IILA0A9fu fuff@!HL9u[]ff.LHGHOH>LLRLJH~"1A0f90fM0HMLf1LH9ufffff.LHGHOH>LLRLJH~"1A0f90fN0HMLf1LH9ufffff.LHOHGH>LLRLJH~+1A0HM*1L*^LH9uDHHGHzH~1fDHfHH9uDH6LHOL HzH~#1AHMfHH9uDHHGH>L LBH~/ >11f(HL*^,f0LH9ufHHGH>L LBH~11HLf0LH9ufH6LHOL HzH~"1AHMfHH9ufDH6HHGLHzH~ 1f9HLHH9uH6LHOL HzH~"1AHMfHH9ufDHLGL9tDLLJH6HLZH~!1HLfLfAMH9uf.L HBI9tMIMMuH6LBHH~1HfLH9ufDHLGL9tDLLJH6HLZH~!1HLf+LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf+LH9ufDHLGL9tDLLJH6HLZH~"1HLfLfAMH9ufL HBI9tMIMMuH6LBHH~1HfLH9uf@HLGL9tDLLJH6HLZH~!1HLf#LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf#LH9ufDHLGL9tDLLJH6HLZH~!1HLf LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf LH9ufDHLGL9tDLLJH6HLZH~!1HLf3LfAMH9uf.L HBI9tMIMMuH6LBHH~1Hf3LH9ufDSLLOM9tKLLRH6HHZH~+1f.AHMHfAMH9u[LHBI9tMIMMuH6H_HzAH~1fD HHH9ufA[fDSLLOM9tKLLRH6HHZH~+1f.AHMHfAMH9u[LHBI9tMIMMuH6H_HzAH~1fD HHH9ufA[fDLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufLHOHGH>LLRLJH~1A0f;1HMLLH9ufSLLGHOH>HLZLRH~21fA8@1fA9HI!M؈LH9u[ffff.LHOHGH>LLRLJH~11fA 0HMLLH9ufUSLLLGHOH*MHZLZ~B1 @IILA0A9fu fuff@!HL9u[]ff.LHGHOH>LLRLJH~"1A0f90fC0HMLf1LH9ufffff.LHGHOH>LLRLJH~"1A0f90fF0HMLf1LH9ufffff.LHOHGH>LLRLJH~+1A0HM*1L*^LH9uDHHGH>L LBH~11HLf0LH9ufLHOH>LLJH~)1AHMЉ1)fLH9uffffff.HHGH>L LBH~&11f9@HLf0LH9ufLHOH>LLJH~>1fDHfH9t(MLA0ffHH9fuf.HHGHzH~1fDHHH9u@H6LHOL HzH~!1AHMHH9uHHGH>L LBH~+ j31f(*HL^,0LH9uffff.HHGH>L LBH~11HLɉ0LH9uff.H6LHOL HzH~ 1AHM؉HH9uH6HHGLHzH~"1D EHLHH9ufDH6LHOL HzH~ 1AHMЉHH9uHLGL9tLLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@SLLGHOH>HLZLRH~11A@1A9HI!M؈LH9u[fffff.LHOHGH>LLRLJH~1ҋ1A 0HMLLH9u@USLLLGHOH*MHZLZ~<1 @IILA0A9u u …@!HL9u[]ÐLHGHOH>LLRLJH~1A090M0HMLЉ1LH9ufLHGHOH>LLRLJH~1A090N0HMLЉ1LH9ufH6LHOHGLLJHHz~%1A** ^HMLHH9uff.HHGHzH~1fDHHH9u@H6LHOL HzH~!1AHMHH9uHHGH>L LBH~/ Z)1ҋ1f(HLH*^H,0LH9ufHHGH>L LBH~11HLɉ0LH9uff.H6LHOL HzH~ 1AHM؉HH9uH6HHGLHzH~"1D EHLHH9ufDH6LHOL HzH~ 1AHMЉHH9uHLGL9tLLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@LHOHGH>LLRLJH~1A0;1HMLLH9u@SLLGHOH>HLZLRH~11A@1A9HI!M؈LH9u[fffff.LHOHGH>LLRLJH~1ҋ1A 0HMLLH9u@USLLLGHOH*MHZLZ~<1 @IILA0A9u u …@!HL9u[]ÐLHGHOH>LLRLJH~1A090C0HMLЉ1LH9ufLHGHOH>LLRLJH~1A090F0HMLЉ1LH9ufLHOHGH>LLRLJH~+1A0HMH*Ƌ1LH*^LH9uDHHGH>L LBH~11HLɉ0LH9uff.LHHGLLJM~&19HL1׉8)LL9ufHHGH>L LBH~$119@HLɉ0LH9u@LHOH>LLJH~91fDHH9t$MLA0HH9uffffff.HHGHzH~1fDHHHH9uH6LHOL HzH~#1IHMHHHH9uDHHGH>L LBH~. *1f(H*HL^H,H0LH9uf.HHGH>L LBH~1H1HLH0LH9ufH6LHOL HzH~"1IHMHHHH9ufDH6HHGLHzH~ 1H9HLHH9uH6LHOL HzH~"1IHMHHHH9ufDHLGL9tHLZLRH~01I8@1I9HI!M؈LH9u[ffffff.LHOHGH>LLRLJH~1H1I 0HMLLH9uUSLLLGHOH*MHZLZ~@1 @IILI0I9Hu HuHH@!HL9u[]ffff.LHGHOH>LLRLJH~!1I0H90HM0HMLH1LH9uffffff.LHGHOH>LLRLJH~!1I0H90HN0HMLH1LH9uffffff.H6LHOHGLLJHHz~&1I*H* ^HMLHH9uf.HHGHzH~1fDHHHH9uH6LHOL HzH~#1IHMHHHH9uDHHGH>L LBH~v1 I@H,HLHLH9t=HHx9H*f(^f(f.r\HLH,HL1LH9ufI҃II I*XfHHGH>L LBH~1H1HLH0LH9ufH6LHOL HzH~"1IHMHHHH9ufDH6HHGLHzH~ 1H9HLHH9uH6LHOL HzH~"1IHMHHHH9ufDHLGL9tHLZLRH~01I8@1I9HI!M؈LH9u[ffffff.LHOHGH>LLRLJH~1H1I 0HMLLH9uUSLLLGHOH*MHZLZ~@1 @IILI0I9Hu HuHH@!HL9u[]ffff.LHGHOH>LLRLJH~!1I0H90HC0HMLH1LH9uffffff.LHGHOH>LLRLJH~!1I0H90HF0HMLH1LH9uffffff.SH6LLGHOLHLRHz~q11DH*IHxDH*^HMM HH9tL LBH~1H1HLH0LH9ufLHHGLLJM~,1HHH?HH39LH8H)LL9ufff.HHGH>L LBH~&11H9@HLH0LH9ufLHOH>LLJH~?1fDHHH9t)MLI0HHHHHH9HufHHGHzH~1fDHHHH9uH6LHOL HzH~#1IHMHHHH9uDHHGH>L LBH~. 1f(H*HL^H,H0LH9uf.HHGH>L LBH~1H1HLH0LH9ufH6LHOL HzH~"1IHMHHHH9ufDH6HHGLHzH~ 1H9HLHH9uH6LHOL HzH~"1IHMHHHH9ufDHLGL9tHLZLRH~01I8@1I9HI!M؈LH9u[ffffff.LHOHGH>LLRLJH~1H1I 0HMLLH9uUSLLLGHOH*MHZLZ~@1 @IILI0I9Hu HuHH@!HL9u[]ffff.LHGHOH>LLRLJH~!1I0H90HM0HMLH1LH9uffffff.LHGHOH>LLRLJH~!1I0H90HN0HMLH1LH9uffffff.H6LHOHGLLJHHz~&1I*H* ^HMLHH9uf.HHGHzH~1fDHHHH9uH6LHOL HzH~#1IHMHHHH9uDHHGH>L LBH~v1h hI@H,HLHLH9t=HHx9H*f(^f(f.r\HLH,HL1LH9ufI҃II I*XfHHGH>L LBH~1H1HLH0LH9ufH6LHOL HzH~"1IHMHHHH9ufDH6HHGLHzH~ 1H9HLHH9uH6LHOL HzH~"1IHMHHHH9ufDHLGL9tHLZLRH~01I8@1I9HI!M؈LH9u[ffffff.LHOHGH>LLRLJH~1H1I 0HMLLH9uUSLLLGHOH*MHZLZ~@1 @IILI0I9Hu HuHH@!HL9u[]ffff.LHGHOH>LLRLJH~!1I0H90HC0HMLH1LH9uffffff.LHGHOH>LLRLJH~!1I0H90HF0HMLH1LH9uffffff.SH6LLGHOLHLRHz~q11DH*IHxDH*^HMM HH9tL LBH~1H1HLH0LH9ufLHHGLLJM~,1HHH?HH39LH8H)LL9ufff.HHGH>L LBH~&11H9@HLH0LH9ufLHOH>LLJH~?1fDHHH9t)MLI0HHHHHH9HufHHOH9tDL LBH6HLRH~#1HXLLLH9uLLRM9tMMMMuH6HOHzH~1fDHXHH9uHHOH9tDL LBH6HLRH~#1H\LLLH9uLLRM9tMMMMuH6HOHzH~1fDH\HH9uHHOH9tDL LBH6HLRH~#1HYLLLH9uLLRM9tMMMMuH6HOHzH~1fDHYHH9uHHOH9tDL LBH6HLRH~#1H^LLLH9uLLRM9tMMMMuH6HOHzH~1fDH^HH9uSLLGHOH>HLZLRH~/1AA.@H!IM؈LH9u[SLLGHOH>HLZLRH~/1AA.@H IM؈LH9u[H6LHOHGLLJHHz~1A.HMLHH9uÐH6LHOHGLLJHHz~1A.HMLHH9uÐH6LHOHGLLJHHz~1A.HMLHH9uÐH6LHOHGLLJHHz~1A.HMLHH9uÐSH6LLGHOLHLRHz~?1Wf.MMH1AA.zt . HH9u[SH6LLGHOLHLRHz~B1Wf.MMHA.Au z . HH9u[ffff.SH6LLGHOLHLRHz~i1W,f.. ؃HH9t?MMHAA.zu1.ufDz.H H9u[fDLHOH>LLJH~+W1DA.@H MЃLH9uffff.H6HHGLHzH~#1.HLHH9uDH6LHOL HzH~61 fDMHA1(\.zt.HH9ufH6HHGLHzH~'1\.HLHH9uÐH6LHOL HzH~*1AHfMȃHH9ufffff.LLGHOLLRHzHH~F1fDMMHAA.s(((TUVHH9uf.LLGHOLLRHzHH~F1fDMMHAA.s(((TUVHH9uf.LLGHOLLRHzHH~F1fDMMHAA.s(((TUVHH9uf.LLGHOLLRHzHH~F1fDMMHAA.s(((TUVHH9uf.H6HHGLHzH~%1HYLHH9uH6HHGLHzH~$1 8(H^LHH9u@HHGHzH~1fDH?HH9u@HHGH>L LBH~11HLɉ0LH9uff.LHOL HzHH~61W MHA.wWXHH9ufH6HHGLHzH~$ 1HWLHH9u@LHOL HzHH~^1WA?%t$D$HH9t-MHA.w.v$DT$HD$H9uf.(((TUVHHOH9tDL LBH6HLRH~#1HLXLLH9uLLRM9tMMMMuH6HOHzH~1fDHXHH9uHHOH9tDL LBH6HLRH~#1HL\LLH9uLLRM9tMMMMuH6HOHzH~1fDH\HH9uHHOH9tDL LBH6HLRH~#1HLYLLH9uLLRM9tMMMMuH6HOHzH~1fDHYHH9uHHOH9tDL LBH6HLRH~#1HL^LLH9uLLRM9tMMMMuH6HOHzH~1fDH^HH9uSLLGHOH>HLZLRH~01AfA.@H!IM؈LH9u[ffffff.SLLGHOH>HLZLRH~01AfA.@H IM؈LH9u[ffffff.H6LHOHGLLJHHz~ 1fA.HMLHH9uH6LHOHGLLJHHz~ 1fA.HMLHH9uH6LHOHGLLJHHz~ 1Af.HMLHH9uH6LHOHGLLJHHz~ 1Af.HMLHH9uSH6LLGHOLHLRHz~A1fWfMMH1AfA.zt f. HH9u[fffff.SH6LLGHOLHLRHz~D1fWfMMHfA.Auz f. HH9u[ff.SH6LLGHOLHLRHz~j1fW,ff. ؃HH9t?MMHAAf.zu1f.uzf.H H9u[DLHOH>LLJH~,fW1@fA.@H MЃLH9ufff.H6HHGLHzH~$1f.HLHH9u@H6LHOL HzH~91 fDMHA1f(\f.ztf.HH9uffffff.H6HHGLHzH~(1\f.HLHH9uH6LHOL HzH~*1AHfMȃHH9ufffff.LLGHOLLRHzHH~M1fDMMHAAf.sf(f(f(fTfUfVHH9uLLGHOLLRHzHH~M1fDMMHAAf.sf(f(f(fTfUfVHH9uLLGHOLLRHzHH~M1fDMMHAAf.sf(f(f(fTfUfVHH9uLLGHOLLRHzHH~M1fDMMHAAf.sf(f(f(fTfUfVHH9uH6HHGLHzH~%1HLYHH9uH6HHGLHzH~% Z1f(H^LHH9uHHGHzH~!1fDH?HH0HH9uffff.HHGH>L LBH~1H1HLH0LH9ufLHOL HzHH~@1fWf.MHAf.wfWXHH9uH6HHGLHzH~% b1HLfWHH9uLHOL HzHH~i1fWIH?$fDHt$D$HH9t/MHAf.wf.v!LT$HD$H9uf(f(f(fTfUfVfHHOH9tHLZLRH~01A)A(@H!IM؈LH9u[ffffff.SLLGHOH>HLZLRH~01A)A(@H IM؈LH9u[ffffff.H6LHOHGLLJHHz~ 1A()HMLHH9uH6LHOHGLLJHHz~ 1A()HMLHH9uH6LHOHGLLJHHz~"1A()HMLHH9ufffff.H6LHOHGLLJHHz~"1A()HMLHH9ufffff.SH6LLGHOLHLRHz~@1 MMHA(1A)zt DHH9u[ffffff.SH6LLGHOLHLRHz~N1 MMHA(A)uz f f.HH9u[ÐSH6LLGHOLHLRHz~{1?  ؃fHH9t=MMHA)A(zu1uzH H9uD[@LHOH>LLJH~.1fDA(@H MЃLH9uf.H6HHGLHzH~ 1)HLHH9uH6LHOL HzH~71 fDMHA(1zt @HH9uÐH6HHGLHzH~"1)HLHH9ufDSLHOH>LLJH~41ApIHMЉt$D$H\$LH9u[LLGHOLLRHzHH~71fDMMHA)A(s HH99ufLLGHOLLRHzHH~71fDMMHA)A(s HH99ufLLGHOLLRHzHH~?1fDMMHA)A(s fHH99uÐLLGHOLLRHzHH~71fDMMHA)A(s DHH99ufH6HHGLHzH~1)HL8HH9ufH6HHGLHzH~!1fD)HL8HH9uHHGHzH~(1fDIH@?LHH9ufDSHHGH>L LBH~$1HqHLHpLH9u[LHOL HzHH~(1 @MHA(wHH99uH6HHGLHzH~1)HL8HH9ufLHOL HzHH~h1(fDHH99u ?MHA(wv)HH99u fDfH6LHOHGLLJHHz~51AHX A@QMXL@HH9uff.H6LHOHGLLJHHz~51AH\ A@QM\L@HH9uff.H6LHOHGLLJHHz~O1A HAXM((AYYLYY\X@HH9uÐLHHGLHLRMLJ~K1fDLLL Y.Pw1.u z.@H@7L9uDLHHGLHLRMLJ~K1fDLLL Y.Pw1.u z.@H@7L9uDLHHGLHLRMLJ~K1fDLLL Q.Xw1.u z.@H@7L9uDLHHGLHLRMLJ~K1fDLLL Q.Xw1.u z.@H@7L9uDSLHHGLHMLRLJ~?1DLLL1.QHu z .!HL9u[SLHHGLHMLRLJ~B1DLLL.QHu z . HL9u[ffff.SLHHGLHMLRLJ~Z1Wf.LLL.QXu z 1.zt.u z . HL9u[DSLHHGLHMLRLJ~n1WCf.zJ.uEzC.@u:z8.@H L9@7t1@LLL.IXtHL9@7u[ÐSLHHGLHMLRLJ~w1W5f.zS.uNzLDtGHL9ƈtDLLL.YPu z . .ttH1L9ƈu[H6HL HLBH~91W LL1I.uz.AD ЃHH9uffffff.HHOH>L LBH~81 fDLLH.u z.@H@1H9uHHOH>L LBH~V1 fDLL(H\.zt .zt(1\.zt.@H@1H9ufHHOH>L LBH~=1 fDLL1\H.u z \.@H@1H9uff.H6HHGLHzH~E1 HAL((YYY\X@HH9uHHGHzH~!1fDH?@HH9uffff.HHGH>L LBH~* 1A1WHLɉ0@LH9ufffff.ATUSLHHGLLJMW1A?L$Dd$Q.wN@@@@ t.w8.w @t>.ʐv.H0@L9t*LLQ.vDՐD.ztʉf[]A\ff.H6HHGLHLJHLB~t1GfD.u z.sI.uD@z>.z9u7HH9_t7DLLLQ.XvHH9Wufff.H6HHGLHLJHLB~t1GfD.u z.sI.uD@z>.z9u7HH9_t7DLLLQ.XvHH9Wufff.H6HHGLHLJHLB~t1GfD.u z.sI.uD@z>.z9u7HH9_t7DLLLQ.XvHH9Wufff.H6HHGLHLJHLB~t1GfD.u z.sI.uD@z>.z9u7HH9_t7DLLLQ.XvHH9Wufff.H6LHOHGLLJHHz~51AHA@MQX LX@HH9uff.H6LHOHGLLJHHz~51AHA@MQ\ L\@HH9uff.H6LHOHGLLJHHz~Q1A HAXMAf(f(LYYYY\X@HH9uffffff.LHHGLHLRMLJ~N1fDLLL YPf.w1f.u zf.@H@7L9ufLHHGLHLRMLJ~N1fDLLL YPf.w1f.u zf.@H@7L9ufLHHGLHLRMLJ~N1fDLLL QXf.w1f.u zf.@H@7L9ufLHHGLHLRMLJ~N1fDLLL QXf.w1f.u zf.@H@7L9ufSLHHGLHMLRLJ~A1DLLL1Qf.Huz f.!HL9u[fffff.SLHHGLHMLRLJ~D1DLLLQf.Huz f. HL9u[ff.SLHHGLHMLRLJ~^1fWfLLLf.QXu z 1f.ztf.uz f. HL9u[ÐSLHHGLHMLRLJ~o1fWBfzKf.uEzCf.fu;z9f.@H L9@7t1LLLf.IXtHL9@7u[SLHHGLHMLRLJ~z1fW4fzVf.uPzN@tJHL9ƈtGLLLf.YPuz f. f.ttH1L9ƈu[DH6HL HLBH~;1fWfLL1If.uzf.AD ЃHH9uffff.HHOH>L LBH~:1 fDLLHf.u zf.@H@1H9ufffff.HHOH>L LBH~\1 fDLLHf(\f.zt f.ztf(1\f.ztf.@H@1H9ufff.HHOH>L LBH~?1 fDLL1H\f.uz \f.@H@1H9ufH6HHGLHzH~G1 HALf(f(YYY\X@HH9uÐHHGHzH~)1fDI?HH@LHH9uDHHGH>L LBH~- 1AH1HLfWH0@LH9uff.ATUSLHHGLLJMfW1I?HHL$Ld$Qf.wT@@@@ tf.w=f.w @tEf.v4HHH0H@L9t5LLQf.vLLf.ztH[]A\ff.H6HHGLHLJHLB~u1GfDf.u fzf.sIf.uCfz?f.z9u7HH9_t7@LLLQXf.vHH9Wuff.H6HHGLHLJHLB~u1GfDf.u fzf.sIf.uCfz?f.z9u7HH9_t7@LLLQXf.vHH9Wuff.H6HHGLHLJHLB~u1GfDf.u fzf.sIf.uCfz?f.z9u7HH9_t7@LLLQXf.vHH9Wuff.H6HHGLHLJHLB~u1GfDf.u fzf.sIf.uCfz?f.z9u7HH9_t7@LLLQXf.vHH9Wuff.H6LHOHGLLJHHz~)1AhHiA(M)L8xHH9uH6LHOHGLLJHHz~)1AhHiA(M)L8xHH9uH6LHOHGLLJHHz~51A(HAhM)iL8xHH9uff.LHHGLHLRMLJ~n1fDLLL)i(hw1u"z&@&fDfD fDH@7L9ufLHHGLHLRMLJ~n1fDLLL)i(hw1u"z&@&fDfD fDH@7L9ufLHHGLHLRMLJ~n1fDLLL)i(hw1u z$@"ffD fDH@7L9ufLHHGLHLRMLJ~n1fDLLL)i(hw1u z$@"ffD fDH@7L9ufSLHHGLHMLRLJ~T1DLLLi1h)(uz! fDHL9u[ff.SLHHGLHMLRLJ~\1DLLLih)(uz  fDHL9u[HHOH>L LBH~F1 fDLL(hu z @ f.H@1H9ufHHOH>L LBH~p1 fDLL(hztDz t%1zt@f.@H@1H9uHHOH>L LBH~F1 fDLL(1huz@fH@1H9ufH6HHGLHzH~11)HiL8xHH9uSHHGH>L LBH~,1iHqHLHpxLH9u[ff.LHHGLLJM1d)iwyf@@@ twmw@t~vj fDHH@@L98thLL)ivff.ztf @fff.USHHGHW8H1)IЋC@LOLG(HO Hw8H$H#H\$HHtHX0HHH߀#HH[]f.AUDo0ATEUSD_EHo@E11HcIDL1D9 tZfD EPIMcFL E9u>D9|DHtAHG McJJHHG H41[]A\A]ADE9|HH1E1fHH1fH#ShHXHHHu HPHR0[Ð 8WGWFffffff.^((Y'Yo(YX(YYYX\^^ Bfff. fWGfWFffff.^f('f(YYof(Xf(YYYYX\^^ B/>o~Ð/.on:zDWhEuHB#HH46fff.H86Gu 1:6ft HtB#6fDHc06Hc5Hc5Hc55fDAWAVAUATIUSHHG0D$$oDwHc~G1L<$MA܉DIW@B#H<TA9HcADDML<$DHt$(L71HL$HQJ:D$ ID$ 9D$$L.HD$HH[]A\A]A^A_ffffff.SHHpHtf.H{xHtX.HHtG.HHt6.H{PHt(.HC`HtHHHHt0HCXHtHHHHu H{XHGP0H[-@H{`HGP0ff.HSHtH-H{H[-@[fDHl$Ld$H\$Ll$H8Iu'1H\$Hl$ Ld$(Ll$0H8@t[H=L1H2HD$~Ll$fDH=*L12LH79}HD$@Hx2vH=d2bH\$Hl$H5Ld$H(IA|$H5vH1HHIt$8MD$HHP$HK$H=1 2HHHHt=HUHHHUuHUHHD$R0HD$H\$Hl$Ld$ H(@HSHHD$R0HD$fIL$HIt$8HP$H=11fUHcH,SHHL0IIHpDHEҋ@)1RDHL9APDHcHH HuLcHv(N L IPp9 ~F xHUHcHR H4IPxMcBHcHH LInH2APDE1HcHH HqL IPp9 fH1[]APDE1HcHH BH9#H5H86H[]fffff.AWIAVAUATUSH(HL/LgH_HD$HBHD$HRHT$L6M~1%f.HHI9~dLl$Ld$H\$I $I}H;1L4)Ht7HHtH HHH uH;HHWH$R0H$I9HfH([]A\A]A^A_ÐAWAVIAUATUSHHL'H_HD$L.LzM~d1HHI9~TLd$LI<$11L(Ht7HHtH HHH uH;HHWH$R0H$I9HfH[]A\A]A^A_ÐAWIAVAUATUSH(HL/LgH_HD$HBHD$HRHT$L6M~z1%fDH$HI9H~`Ll$Ld$H\$I4$I}AH$M,Hu8HHtHHHHuH;HHGP0H$I9HH([]A\A]A^A_fAWIAVAUATUSHHL6L'H_HD$HRMH$~hE1IH+M9~TLd$H$I<$AHHt<+Hu2HHtHHHHuH;IHGP0M9H+DH[]A\A]A^A_fAWAVAUATMUHSHHHHT$(HL$ H`tAW~:H5t#HE1H8D0A~H A9|AHA9|AEMIADcHt/MyIIcI9 J<D$!`D$AL $3HIL $T$ I%D$1 DII9KAy@>t@-tHs#HT$@L $hHHD$8HT$L $@ADHT$8HHHHD$HcT$DES7f.IcŋD=~H Ks#HI8 9AA9|H5#H52#H81HH[]A\A]A^A_@IAoHr#Ht$8LpHD$8@AEHT$8HHHHuH|$8HGP0fDEOIc*HIH{`Ho+HIHHIHHHT$+HHT$tNItz1E~.LHA}1A;9t&fED A| HA9uA9A9H@HuH\4#H5?#H8/L=$HH[]A\A]A^A_ÐHcsHHA};<S@H|$8HGL $P0L $MHT$8D$HT$1D$HcT$I9HFq#I|Ht$HT$L $pHT$L $?HD$8@ADHT$8HHHHuH|$8HGL $P0L $MyIM111@HcL9HqA|$-uA|%>uL9XK9tDCLH)HIcH9_J<D$2IFLHT$P0HT$DS01E1ECIt]1E~7LC@HcLA 1A9Mt' rHHcA 9uA9A9ADE9IuCHS@HA9EA<$Mt s0fLC@{A: E1DHcA: AA9|-HH\$(EH HHH\$ H ~(A1J4fDHX \ HH9uHHHHLa!HH1[]A\A]A^A_HS IcHL$(EHHHS(HHT$ H~EA1J4fDHK@IcATHH9u뉿D$FE1CfE1ICAD9~6KIcHs@A|H;n#AAL Hc4uCA9tAD9s0D9s0S1~)AHs@HcƒHcTS9HC(HMcHL$ JJHHC HHT$(HHH1[]A\A]A^A_øH60#EHK8H ~H5DHHDH.#H81"THcD%HIH{`H%IIHHIZMKLL$CD$&HHtfD$E1E1;AID9|$~,HAC4B|5B40Hl#HL$HL$uD9|$HIHuS"HBHP0I HD$ IcHHtDCHS8H|H5HHDH-#H81!HHT$(HHAH\$ H|$~%D$H1HQTHH9uHH1[]A\A]A^A_IFLP0H-#H5JH8J)ffff.AVAUIATUSH0H}hHEpLcN$BC( HcS(Hs0HH%HEpB ~E1DHS(B4!HMxHcƃHcHc4H HLILHUpB9"[]A\LA]A^fDC(Lk0L[]A\A]A^H9,#H5E1H8O(DSH`HHGHtHHHHHC HtHHHHHCHtHHHHHCpHtHHHHteHHtHHHHt:HHt1 HS`HHHHu H{`HGP0H[fHHGP0H{pHGP0H{HGP0cH{ HGP07HHGP0 ATIUSH0H HtI$ HtpI$0j~IL1fI$0H9j~,H0HtHHHHuH0HGP0I$pHtI$@HtHHHHt2I$0HHHHuI$0HGP0[]LA\I$@HGP0ffffff.SH xdHpdH%(HD$h1LG8H%HHT$hdH3%(uHp[#ff.AWAVEAUAATIUSHXHt$(HT$0DL$L$H$'HHHD$8H5A#HHD$8/!DuD$AƉEDu$Le EHT$(HU(HL$0Dm0HM@$HEPHEXHE`E4H$HwHE$MEhElHEpHExHDžHDžHE8HwIEHHEHuHD$8HX[]A\A]A^A_1HHHHAHHD$H%HHt HH"H|$HH%HHD$ yHc}EhElH%HEpH|$HH%Hc}HExH%H}pHH}xHx< E1AIc< t< tD$0D$DL$D9MIc<(AMcF< A tA tt$0Hl$t$(D$(+D$0A)AG<AG<A_tL-!vH|$ H|$HH$HHAH &vEMHH1H$"H&#HH8"H3HD$8DH|$E1N, LD$ D_lE.I0MDLfDx@H<_wHЀ kA<A<_v0 jE9~HL$HcT$(HAxDfB PP{<_sPЀ g< pAMcB < t< t<)ZD$(F< D$(+D$0A)CHl$HcT$DAMcHMpt$(H)Ɖ4D$DB < XAMcB < t< t|$D;}t5;}t0<,"AMcB < AMcB < t< tT$(B T$0Nf.i@vTi@vK_tFi@ v=@AIE9McILt$ M.HD$@lqD8uHH@AMc\E1< <,uDAMcB < u.fDAMcB < t< t<)pL-m{< tL-s<-|>AIc< AIc< t< t4HD$8L$D;Mu3Hct$0H}xHHEx|$0uEhH|$ L-z5H|$ HD$8E1< k|< PL-q< L-$r< P@<_@0<  qL-qffff.H8D$XHD$ D$HD$PHD$HD$HHD$D$@$H8fDH\$Hl$LLd$Ll$ALt$L|$HdH%(HD$x1HFIIAH$HD$AHWEJcHf.Ht{EIn H;-I$#Ld$LD$HyLd1LHHCpH5pLH1MHHHHHu HPHR0!1HT$xdH3%(H$H$L$L$L$L$HĸHl$LD$HEpLd1HH!#HH8fIn H;-5##IcLIH=oLH1`HIHHI$HHI$IT$LH$R0H$@DEEH\##LD$HxLH81FEfH #HL$H5;oLH81xH"#HL$H5lwLH81WHn"#HL$H5wLH815fDH\$Hl$Ld$Ll$H(҉IItu1H\$Hl$Ld$Ll$ H(uKt?uct uqttHnM Ly@tIȉHCnrypH8nMLMyH$nML0pfDH\$Hl$Ld$Ll$H(&AŃDDEAAHDLl$ D Ld$ Hl$ H\$H(ffff.kff.H\$Hl$Ld$HHI@LHHl$H$Ld$Hffffff.H\$Hl$HLd$Ll$HLt$H(IHGIIM,H!HGH8MAEsB=#8/HCHxAwHCLhL;-h#tFLu:H59lLHHHotcHHHHHH=nlLH1\HI$1HtOH$Hl$Ld$Ll$Lt$ H(fH#H5tH82HHHHH#HkH5kH81f.HCHP0AH#H52tA$H81e=HuAUzH#H5:tH8 HKH;#AH5&kH81HCHP0@H\$Hl$HLd$Ll$H(D &Y#HIIEuPHA$Hi#H=jH1IEE'1H\$Hl$Ld$Ll$ H(fH=X#tVIHtDH5X#HHHtMLHHHl$H\$Ld$Ll$ H(@뵐H=i H]X#ff.AWAVIAUIATEUHSHL$XDL$<DŽ$`DŽ$dDŽ$hWhH@D$pD$tD$xD$\JHHǀ ǀLH@0Lh`L$`IEH@ E1HǀHǀMH@H@LH@p@xHǀHcD$XHD$@HEHT$@H@ HHHEH@(HH$pHHT$PHt$PHD$HH{`HLT$(L\$0LT$(L\$0VD$xE9t5D$pD$tE1H{`HT$HMHt$PLmH$HKpHShHHEpHx H>V#HcH9}bLeAD$AtID$8x>tD;xtIHV#DhHHU#E111AH}(HuHEHLeHHǃAID$8xǃ|$<h|$<-|$<[D$<1Dl$\E~6l$\DD$X111D9tI|$ HcH<H|`H9uMAt$HT#H|$`HHT#AvI~ H9HT#DHhhHLHHC7I9t ǃ IID$8D@ EۉIF8@ C(IFHHKT#AvI~ HC8HĈH[]A\A]A^A_@AD$AtIT$8z>t D;zcǃID$8x>A8ǃGAE\1 IHS#DhHHS#E111AL(HIEHHIEHHE8H HuH{@Hc9 HEHHHEHEHP0D=HcT$\It$ Hl$`HHWH$HD$@MHT`HR#HAt$HH$uǃf.MLsMf.H1n IfDMH(R#At$I|$ H*H#H5l1H813fDH#H5cH8eDIELP0WǃhHǃID$(HT$@HHHf.HYQ#LHHC6ƀ8Hl$@HKH$HQ HtHHH?HHA HCHDLl$@HCIdJDHCH@ HC8DT$HS0H9S8HCxLLL$Hl$PHD$@HCHH0HH$1ɋHH@8H@@E11HHtHHHt HHHcS(H{HcHH9YLHDŽ$DE/H;u!fHH9tjHH$1ɋLHH@8H@@HcHHcH$HIHEH$HcH9|HHHtHHE11HLLLH$HHH$HHu,{hHspHT$@3fDCHt1PHCH@HCHH(H0HCH@(HcC(HHHHC0HH;C8HC0Hl$PHH$HR8zHDŽ$1HHHH:Ht%HHHHHuHGP0H$HH$HcH9|@Hs8H9s0|FifH(H0HCH@(HcC(HHC0HH;C8HC0(tHCH0HHHCHcS(HH0HCH@HCPz8tH(HR8HcR H0m\HcHt(H9(>HD(HCH(H)0"HCHcHt(H;(}HHt(HCH(H0HK0H9K8&LLLL{xIH(H0HCH@(HcC(HHHHC0HH;C8HC0tHCH0HHHCHcS(HH0dHCHLLLH0HHu\{hu=HCH@HCP-8tLH(HR8HcR H0 HspLtjHtXftwHcHt(H9(HD(HCH(H)0"HCHcHt(H;(}HHt(HCH(H08B H(HR8HcR H0Q8 H(HR8HcR H0HC 8 H(HR8HcR H0@H=F wH|$H-HP0H;0 HHP0HCH0H0H@0HCH@(HCH(H+0H0HDŽ$H{8Lc@fDtI$HHcS(HLLHcC(HH$HH$H;C8|JH@0HCH@(HCH(H+0H0*HP0H;0y HHP0HCH0H0HDŽ$H{8Lc@tI$HHcS(HL$HcC(HH$HH$H;C8|rH@0HC H@(HC H(H+0H0HC HK8H9K0rHHHKxH$Ll$`Hl$hHD$@IGLt$`HT$HHL$XHt$PIHD$`ML`[1@IDHI+HH$~PHHHHHHT$@Ht$PH|$H{hHCHH@(J(HI9HHCI4H0HtHHt HHHcS(HL9#H$HI+HR J*HQLt$`Hl$h\HE1 HspHT$XHCH@HCHH(H0HCH@(HC H@HC HH(H0HC H@(HC H0HHC0HH;C8HC0 Lt$`Hl$h,D8H(HR8HcR H0g8GH(HR8HcR H0HC nHs8H9s0HS@HHKxIwLL$Lt$XHT$hIHL$@H$L$Hl$xHD$XH$H@HD$PHD$HtHT$hHHtHHcS(HHt$hhH$H9L$HAHt$HHT$PHDH+HHt$HHNHL$P1H$HcHSHH0HH$DLHDŽ$H;$uH$H9tjHH$1ɋLHH@8H@@HcHHcH$HIHEH$HcH9|HHHtHHE11HHLLLH{hH$HHHH9$HSHt$`HR(H2HHD$HHD$HH9$HCH@HSBH(H0HCH@(HC H@HC PH(H0HC H@(HC H0HHC0HH;C8HC0DLt$XHl$xHH$HR8zE1Hc HcII9^JHH8HtHHHHHuHGP0HkLt$XHl$x HspHT$@BN1fDNHD$pH$Ht$`HT$HHL$PH@ H0H+5HcHt(H9(~#`@HC HcHt(H;(BHD(HC H(H)0yHC HcHt(H9(;HD(HCH(H)0[HCHcHt(H;(}HHt(HCH(H0$MHcHt(H9(;HD(HCH(H)0HCHcHt(H;(}HHt(HCH(H0fHcHt(H9(~%fDHC HcHt(H;(}HD(HC H(H)0yHC y0jfHD(HCH(H)0CHCHcHt(H;(}HHt(HCH(H0 H@0HCH@(HCH(H+0H0 H$1HH@8H@@H$1HH@8H@@H@0HCH@(HCH(H+0H0LkH|$pMH|$p>HHt(HC H(H0HC 7HP0H;0 HHP0HCH0H0HHt(HC H(H0HC HP0H;0HHP0HCH0H0HP0H;0$HHP0HC H0H0HC ~HP0H;0HHP0HC H0H0HC HP0H;0HHP0HCH0H0H@0HCH@(HCH(H+0H0oHH@0HCH@(HCH(H+0H0}H@0HC H@(HC H(H+0H0HC 4H@0HC H@(HC H(H+0H0HC JH@0HCH@(HCH(H+0H08tCH(HR8HcR H0HC +8tgH(H@8Hc@ H0HcHqH|H;(|qHDHC H(H)0HC 뽃wHKHcHrH|H;(|vHDHKH(H)0HH|HC H(H0HC JHP0H;0}pHHP0HC H0H0HC HH|HCH(H0HB0H;0}RHHB0HCH0H0H@0HC H@(HC H(H+0H0HC HB0HCH@(HCH(H+0H08fDfD1fAWAVAUATUSHHHH6Ht$(D1DyHIG$7HL$0McM~HL$@1HHHI9H|$(Hl$@McHD$ McJDHD$8LeHIM~?HD$@HH1HDHHIDHHI9H|$01LHIEHHIEHtqHBNl@IEHtHHHHNIU1M~@HTHHTHI9HD$ HD$ H9D$(HH[]A\A]A^A_fDIEHHIEuIELH@0HH[]A\A]A^A_IELHT$P0HT$*HHT$I9HT$E1MHL$8!cfDJtIHH0HM9~DHH0HtH>HHH>uH8HwHD$HT$HL$V0HL$HT$HD$HHHHHBHP0I}HGHT$P0HT$HHHHHBHH@0@AWAVAUATUSHH$H$Ht$hH$H0HHD$`HL!#H@H$SHT$`HD$xBHcH9T$xHL$`HcQH9T$xL$ L$H$ H$H$1E1D$HD$wE1D$pt$@H|$PHD$Xuf.ED$H@A Ld$XHr #1A9D$@D$wMD$@D$@HL$`AHHD9qHT$hH) #LlZHpI}H9t1u!H #I}HpPH9t}H#E1E1111L(HEHEHHP8Ll$PzT$HA|WE҉T$H@E1ADžHn#HLd$X9D$pAMD$pD$pf.HT$hHt$`H=1D1IIH#E1111L(MHE,I$HHI$ID$LP0HEH HD$xHD$xHĸ[]A\A]A^A_@Eu?Dt$HEt5H$dž H>"H50H8WHD$x롋\$p9\$@|$wut0H|$`~%HT$X1HfH9AH$H$MH$L$LH0HXHPΨ $$sH$HL0I9D$HL$hH#Hi HEH;BHQH;BH50H`H$L0I\$8:x/uRC:m/uFC:b/u:C:W/u.H5/H7H$ǀ ,H5/HHH5 /H1H5/HH5/H{H5/HPH5/H%H5/HH5/H|H5/HH5/HyH5/Hb[H5/HK0Et$EsH$LE1L$_DIc$pH9|I$0DXhEt'H@AH@8x>}9xAHHE9HHx pHE#HH}HP89zyH"#HL$(HT$ hHT$ IHH#LD$0HHT$ HL$(LD$0tBEIHHII@LHL$(P0HL$(}H#hHH#E111AH;(HH HHHHt{HH\$`{h}C…b11Ld$`L$L$AD$H9H#I<HI0uH;HWHD$0R0HD$0lHL$`1ۋQ Hl$`tDA|$htCH$DL`ID$pH;4xHH*HHAHP0HGP0fDHt#hHHd#E111AH;(HyH HHHHuH;HWHD$0R0HD$0H,HL$@HT$HDL貨H-HH# E1E1HD$D$$$H$HHH$H\$h1Lt$hE1H0HL$P@D$@H[H\$H1MfH]#I|$H;xtwHpPH9tnueI|$uWH5"H9tKuBI|$H5"H9t1u(ID$uH;~"tH AID9|$@`H$H#fWH$E1AL$H$f(Ht$X;HHHHuHCHD$0P0D$0K\'AID9~bf(HD$XfWJ| H"#L$0L$0f.wK|'f(HHHHuHGL$0P0L$0f(L$E1LT$@H]HAHcH9T$H~tHL$hH"H|H9tgH#HrH9wH5h%NHIt)HvIHHIu IFLP0H]HHtHAHD9d$PWHtHHHHu HCHP0H$ME1H0AIQHL=<"L9H$ALD$hEHHH,H5$1HU HHHHrH7L9.HMHHHHHEH$H0AAIA9OH$HxHǀxǀ ǀ`uH\$`{htH$ H$`LJ`HD$`1H$H19}2H$H08uH4~t{BHH$119}CH H$HIHH|$`HOH$LJ`HD$`HH$HH$`1ۃH$C(H$19}=HcHH$1HDL(MDLH9|H뿍pHcHԠHcHܠH9HӃHL$HT$`;ZH$HcL$I$pHx H[ #HtYI$HcPH@(HDI맋B(H$HH9XGH$HX3IDŽH$`uH\$`E11E1CDd$P1Ll$hL$Ll$`l$XHD$@D$HA9}`dtLI\Ht$hH@8<;xx>H]GI\H@8H L$XAEAHH$l$XD$HDd$PT$@Ll$hDpDLcL蝿HH$HHpH$ tHL14H$HpH$DE1MHcI1pLJ HT$`1Lt$`E1HHƋB1H43D|$@HA9*+dE upD$@E1HIHkLkpH$HoAH@8@ D$@Hkɿ upHHHkH #A<(LD$0hHP HHHLD$0uHHHljT$ Q0LD$0T$ HkHkDHkHt HcHk u tA<(u ǃ AFAHLk^HD$xEI\H@8p t$PAEH #hH]Ix |$HE;}}ZI\HT$hHx8H #4H]IHHIu IFLP0H]I\H@8I\LH@8pHU #H]릋@ D$@oH5r%H"H5 LHHtYHt-HcŃLĠHĠ LuHEHHHHu HCHP01 H5FHH5HuH5HlaH5HXMH}HWHD$0R0HD$0tHgH"H5$H8HD$xLHSHHD$0R0HD$0uHHHHH$H0Aǃ YH$LcIh$MHdHWJ\0IDHHH?HxHHG1H9H(Ɓ8HQ LTHH?IIHA HDJDJDHxH$HH|"H5#H8HD$x,HCHP0H$H0AH$`H$HH?HcpHHH$1҉H\$`1H$KH$9odt'HCtH FHI8HcI HCH|$`OHH 1HH$1Ht$`;V}HH H<HH$`fffff.AWAVAUATUHSHdH%(H$1HH|$(Ht$0HL$HH HHPH@ HT$(H0HHǀpz~,HL$(1Hǀ0HǀH;Q|Hǃ@ǃ ǃHHǃ Hǃ HL$(yhHD$(H@8HD$HD$ HHHED$ HHD$ L$L$L$HDŽ$E1fDLLLHWtYH$&HH=THƹu L$H=>HƹqH$HT$M-Ht$ H8HpL@L7HL$HT$HHHt$0(H RHL$(yht `HDŽ$ `-( u H$H1H$dH3 %(,H[]A\A]A^A_H"H5' H8HDŽ$ u H$UH腙뒃<`HsH9s RLl$(HLHEu1HE~)H0H0HHA9UHXH HH P 8E}E1HE.s@H(H0H0H@(AHE9E~GH0H@H0Pt8tEH(AHHR8HcR H0E9EHC HH9CHC 0fDyHcH|(H9(FDHD(H0H(H)0:H0HcH|(H;(}HH|(H0H(H0HP0H;0}"HHP0H0H0H0H@0H0H@(H0H(H+0H0H@L舤S螶H/rD製H"H5CH8cHCH9C LHLLxHMLt$(AN1H؅~#H0H0HHA9VHXLLHP 8A~E1Hޅ/tDH(H0H0H@(AHE9F~GH0H@H0Pt8tEH(AHHR8HcR H0E9FHC HH9CHC fDtxҐy={fHD(H0H(H)0JH0HcH|(H;(}HH|(H0H(H0 HP0H;0}"HHP0H0H0H0H@0H0H@(H0H(H+0H0H@Lc.H?DH$bDqHDalHHVpIcEl$DtDtIcH"H McIL H H t Hk 1LHѮE~E1J H HHH9uTHXHHsHP  8H@HHH|$ H@H8HpmHH"HL$ H5H81HHHT$hHK H$HsHL$(HD$`H$T$\ALc L,H$1L$L$@L$L$Lt$HIDHcH9t`AHHL9t`IF1HR8Hr@HI4Cr A4tz@@9HC0JTIAHCuAHHL9ut$\HHH$H$H$@H$HL$xH$D$XH$@H$H$H$H9$HL$(Dpy11ҾHHl$xL$L$L$<@HCHCHCAẼA A A H9W~5HC0H0HLEDdEuHCH9W˃|$XH$H$D$TDd$0Ht$pH$T$\9T$T@HD$(DHED$HHc\$DdE[t$0HKnLHL$ Ld~LHLc@E1H\$@\$0Hl$8HŐLLLAMI`D9Hl$8H\$@H݀Ht!HL$ HcE1H݀H|1Ht$(D$D$9FHHcT$0Ht$pH|$hHT$@H$HT$`HXP 8HL$(A;AfDLcBdJMt$nHtJcJ4E1J1BB$NFE]D\$0N4E~PJc@H\$ \$0NE1l$HLLHAMIбD9l$H\$ HL$(9it$X9t$Tt`HD$(DPE~RH|$@Hl$(1L$Ht$x1fDHI@HFHFDdEuHCH9MσD$TT$T9T$X& HL$(yIH\$E1H4IHHtHHHHAID9{ItIt|$\Ht$IDpbE~E1AHEE9~HHEHtHHHHuH}HGP0fDBNJ1H\$Ld$ Lt$8MAÉI 9~+MIHtHHHHuI?HGP09Ld$ DH\$Lt$8FEJc@J4L误fHD$ HT$HALcHc@HH|H1H$$fDHSnHHT$ H|Hc@=HT$HNcAJc@JfDfDAWAVAUATUSHHHHt$D_L$@E~L1HH9CHt$LHkE1`fDkAID9~.I$HHHHuI<$AIHGP0kD9ҋCHT$D$ HRHT$(Lt$E1D$E1fM~H"IH;xt{HpPH9treuiIu\H5"H9tPCuGIH5d"H9t7*u.IGu!H;"tH~AID9_DL$E|$Ld$@H:"L$@H$@fWE1AHD$@l$4H\$8f(LHD|$3I$HHI$Nd-AIE9~if(H"J|+ $fW $f.wJ|-f(HHHHuHGA $IP0 $E9f(Dl$4H\$8DD$ EH\$L$@E1D|$ H\$(hDH5Ht1HH$賮H$HHHHu HBHP09M&LHtHAIE9}UAT-M&LHcH9~HL$H"H|H9tH"HJH9O_IfAIIE9|H\$MtI$HHI$u ID$LP0CH$@H$@E1E1IHD$HT$ H@LD$H51ELHdHHHEHHHEHL9YH@HHHHHL$ J1AD$AID9A\$DHcH@@At,Hh0HEH@HHHHJH@HL$J,1HL="L9HEHHHE#H@HT$ J2XDHEHH$P0H$H Al$A;l$L|B@9k~6HcH@HtHHHHuH@HGP09k1HH[]A\A]A^A_fDHHHHuHBHP0H9"H@`HT$ J2DH@HGH$P0H$^@H@HGP0@HEHP0H9"H8H$H$H@1H1HLtBHckH$@11fH4HtH9KH$@fID$L$P0$;KHD$L$ H@HD$(E1H5kL¥HIH~HcD$D$L@Ld@BDSE~b1AfI9k~JI$Ht@AtH@0H@I$`@I$HtHHHHuI<$HWR0DH"HI$HHI$u ID$LP0E1]Dff.H\$Hl$HLd$Ll$HLt$L|$HHOhIԅuLH$Ht^H"H5pH8x1H\$Hl$ Ld$(Ll$0Lt$8L|$@HHH!"H5H8:1fD1H&HIu1fH)"L(hE111A@HLAIIEHHIE9MtH迡HHtH"L(hE111A@HHAIHEHHHEMIc~HHaAV~3E1IF IcAH@DΉA@A@A8utHAUI9~AMHMuA<$@uHHL$L$iI9AEHL$L$H[]A\A]A^A_ff.AWAVAUATUSHL6L'HoLoLHJMLz~Y11HHI9IU~CMHMHuI$HuؿHHL$L$ihI9IEHL$L$H[]A\A]A^A_fff.AWAVAUATUSHL6L'HoLoLHJMLz~^1 HH?HHI9IU~CMHMHuI$HuӿHHL$L$gI9IEHL$L$H[]A\A]A^A_AWAVAUATUSHL6L'HoLoLHJMLz~Y11HHI9IU~CMHMHuI$HuؿHHL$L$)gI9IEHL$L$H[]A\A]A^A_fff.AWAVAUATUSHL6L'HoLoLHJMLz~^1 HH?HHI9IU~CMHMHuI$HuӿHHL$L$fI9IEHL$L$H[]A\A]A^A_AWAVAUATUSHL6L'HoLoLHJMLz~V11HI9AU~AMHMuA$uۿHHL$L$eI9AEHL$L$H[]A\A]A^A_ffffff.AWAVAUATUSHL6L'HoLoLHJMLz~Y1HI9AU~AMHMuA$uؿHHL$L$IeI9AEHL$L$H[]A\A]A^A_fff.AWAVAUATUSHL6L'HoLoLHJMLz~Z11HfI9fAU~CMHMuA$fuֿHHL$L$dI9fAEHL$L$H[]A\A]A^A_ff.AWAVAUATUSHL6L'HoLoLHJMLz~b1$HI9fAU~CMHMuA$fuοHHL$L$cI9fAEHL$L$H[]A\A]A^A_AWAVAUATUSHL6L'HoLoLHJMLz~^1"1@fHI9AU~AMHMuA$@uпHHL$L$acI9AEHL$L$H[]A\A]A^A_AWAVAUATUSHL6L'HoLoLHJMLz~`1$@HI9AU~AMHMuA$@uοHHL$L$bI9AEHL$L$H[]A\A]A^A_DAWAVAUATUSHL6L'HoLoLHJMLz~Y11HHI9IE~CMHMHuI$HuؿHHL$L$)bI9IEHL$L$H[]A\A]A^A_fff.AWAVAUATUSHHL'HoLoHD$HBH$L6LzM1WHuHH9tLHH8tkHHH?HHtYHIEHI9~4Ld$H,$MHMI4$HuHIaI9IEH[]A\A]A^A_DHHH?HIEffff.AWAVAUATUSHL6L'HoLoLHJMLz~Y11HHI9IE~CMHMHuI$HuؿHHL$L$`I9IEHL$L$H[]A\A]A^A_fff.AWAVAUATUSHHL'HoLoHD$HBH$L6LzM1WHuHH9tLHH8tkHHH?HHtYHIEHI9~4Ld$H,$MHMI4$HuH_I9IEH[]A\A]A^A_DHHH?HIEffff.AWAVAUATUSHL6L'HoLoLHJMLz~V11HI9AE~AMHMuA$uۿHHL$L$ _I9AEHL$L$H[]A\A]A^A_ffffff.AWAVAUATUSHHL'HoLoHD$HBH$L6LzM~u1KutB…8tetXAEHI9~2Ld$H,$MMA4$uH;^I9AEH[]A\A]A^A_AE렐AWAVAUATUSHL6L'HoLoLHJMLz~Z11HfI9fAE~CMHMuA$fuֿHHL$L$]I9fAEHL$L$H[]A\A]A^A_ff.AWAVAUATUSHHL'HoLoHD$HBH$L6LzM|1PfuftNff8tetXfAEHI9~4Ld$H,$MMA4$fuH\I9fAEH[]A\A]A^A_@fAEAWAVAUATUSHL6L'HoLoLHJMLz~V1HI9AE~@MHMUA$uؿHHL$L$\I9AEHL$L$H[]A\A]A^A_ffffff.AWAVAUATUSHHL'HoLoHD$HBH$L6LzM~z1Qu@tL@@8t_tRAEHI9~1Ld$H,$MMA4$uHC[I9AEH[]A\A]A^A_fAE릐AWAVAUATUSHHL6L'HoH_HD$HBMH$LzE1#fH,HILd$H,$LM9HEHxfH*I$Hx8H*Uf.r\H,HHH1DHƒHH H*XfHƒHH H*XfH[]A\A]A^A_ÐAWAVAUATUSHHL6L'HoH_LzHD$HBMH$~9E1I*$H*M7TH,IHLLd$H,$M9H[]A\A]A^A_AWAVAUATUSHHL6L'HoH_HD$HBMH$LzE1#fH,HILd$H,$LM9HEHxfH*I$Hx8H*Sf.Vr\LH,HHH1DHƒHH H*XfHƒHH H*XfH[]A\A]A^A_ÐAWAVAUATUSHHL6L'HoH_LzHD$HBMH$~9E1I*$H*MRH,IHLLd$H,$M9H[]A\A]A^A_AWAVAUATUSHHL6L'HoH_HD$HBMH$Lz~=E1EA$IH*H*.RH,LLd$H,$M9H[]A\A]A^A_ffffff.AWAVAUATUSHHL6L'HoH_LzHD$HBMH$~6E1A*$*MQ,ILLd$H,$M9H[]A\A]A^A_fDAWAVAUATUSHHL6L'HoH_HD$HBMH$Lz~=E1EA$I**Q,fLLd$H,$M9H[]A\A]A^A_ffffff.AWAVAUATUSHHL6L'HoH_HD$HBMH$Lz~=E1EA$I**P,fLLd$H,$M9H[]A\A]A^A_ffffff.AWAVAUATUSHHL6L'HoH_HD$HBMH$Lz~~-c">-c"-v>~-Oc">-Qc"-E>~-c">-c"->~-b">-b"->~-b">-b"~/o>~H0[D-Hb"HH;-Hb"o{-*b"/|$-,b"oH|$|$ HH+kw;{H0[fSHH@/ ~T$D$fTf.oT$D$fTf.Hza"HHva"HFHqa"HFHla"HF.n-y>~-a">-a"-F>~-`">-`"->~-`">-`"->~-M`">-O`"->~- `">-`"~/o>~H@[DoHt$ H|$ |$0;oH{<$HHH+k,$;{H@[UHSHH/: T$D$fTf.oT$D$fTf.H_"HH_"HFH^"HFH^"HF.n-U>~-^">-^"-">~-[^">-]^"->~-^">-^"->~-]">-]"->~-]">-]"~/o>~H[]oHH;{-8]";-<]"{+HHm;km{H[] ffff.UHSHH/ʵ T$D$fTf.oT$D$fTf.H\"HH\"HFH\"HFH\"HF.n-5>~-,\">-.\"->~-[">-["-ѵ>~-[">-["->~-i[">-k["-o>~-([">-*["~/o>~H[]oHH;{-Z";-Z"{2mHHm+;k{+HCSHS{H[]UHSHH(/H-YZ"<$oH-XZ"|$HHm-.Z";m-1Z"{,$HH+l$k;{m;m{H([]fUHSHH/oH>~-Y">-Y"~+HHk;{m;m{W+HCSHS{H[]fff.SHHO5$H$L$HHD$HCH[fSHHO5$H$L$HHD$ YHCYC CH[ff.SHHO"5$H$L$+HHD$ YHCYC CH[ff.SHH f( ȯfTf.WfTf.of(HW"f(YYHHW"YHF\fXf(f(YYYY\f(X%aYY^XW"%|W"Xf(YYYY\f(X%YYVX/W"Y%'W"Xf(YYY\X ӮYYFXV"f(XV"Ff(gYYYY\XVH [f V"HH\ zV"\GC`V"XD$VV"XGH|$D$YK2$H$L$fWЭHHD$f(HCcYf(YYY\X CH [fff.SHH0|f( HfTf.WfTf.of(HtU"f(YYHHfU"YHF\fXf(f(YYYY\f(X%YY^XU"%T"Xf(YYYY\f(X%YYVXT"Y%T"Xf(YYY\X kYYFXbT"f(XZT"Ff(gYYYY\XVH0[ffWHt$ Hf(\XL$  rf(\_\$(XOH$KKJ0D$HD$L$$HHD$ Hf(HCcYf(YYY\XSH0[UHSHHf(ԪfTf.~WfTf.pf(HS"f(YYHHR"YHF\fXf(f(YYYY\f(X%YY^XR"%R"Xf(YYYY\f(X%TYYVX;R"Y%3R"Xf(YYY\XYYNXQ"f(X Q"Nf(gYYYY\XVH[]@Wf(f(YYY\XEMXmQ"EX hQ"M7$H$L$HEHD$EHEXMEXKM-$H$L$HEHD$HEH[]DUHSHHf(tfTf.~OfTf.pf(HP"f(YYHHP"YHF\fXf(f(YYYY\f(X%UYY^X ,P"%(P"Xf(YYYY\f(X% YYNXO"Y%O"Xf(YYY\XǧYYFX O"f(XO"Ff(gYYYY\XNH[]@Of(f(YYY\X]E O"\U O"\f(M4$H$L$HEHD$EHE \CXMEMD+$H$L$ EHEHD$EfWHEHEEHEH[]ff.UHSHH(OXCN"X CN"D$L$3$H$L$\N"HD$HD$HD$EK\ M"M3$H$L$HEHD$]HEd$T$Mf(f(YYYY\XEMXEXKM*$H$L$HEHD$HEH([]ffff.UHSHH(Gf(f(YYY\XVL"\ L"\N2D$HD$L$wHEHD$MHEEMfWEXEXKMf)$)D$L$HD$HEHD$EHEHEHEf($fWEH([]DS~H%f[ffff.S~H%fo YYC C[ffffff.S~Hk%f3 YYC C[ffffff.SHH()TZf.OTZf.(H\K"(YYHYf\X((YYYY\(X%pYYNXJ"Y%J"X(YYY\X(YYFX J"(XJ"F(gYYYY\XNH[@ XJ"H\H FJ"\GC0J"X$#J"XGHD$~#fWHc((YYYY\X CH[fffff.SHH ()TZf.OTZf.(H\I"(YYHYf\X((YYYY\(X%xYYNXH"Y%H"X(YYY\X0YYFX H"(XH"F(gYYYY\XNH [@WHt$H(\XT$(\_\$XWH $S~!f $c((>YYYY\XKH [UHSHH(5TZf."OTZf.(HhG"(YYHYf\X((YYYY\(X%YYVX G"Y%F"X(Y TYY\XYYFXF"(XF"F(gYYYY\XVH[]O((YYY\XUEX7F"UX.F"E~E%fEEXEEXCE~EwfEH[]UHSHH؟(UTZf."OTZf.(HE"(YYHYf\X((YYYY\(X%YYVX #E"Y%E"X(Y |YY\XYYFXD"(XD"F(gYYYY\XVH[]O((YYY\XUE WD"\M JD"\M~E+#fEMXE\KEM~EfE EEWEEH[]ATUHSHH0XC"D$D$GXC"D$ T$ H H HD$~D$"fD$Ld$\wC"EC\iC"E~EN"fEDd$I d$]Dd$T$((YEYYY\XMEX MXCE~EpfEH0[]A\f.UHSHHG((YYY\XFB"\ B"\N~f!fE EWUUEXEXSU~E) $fEEEE( $WEH[]fDH\$Hl$H(HT$ HHZ1xT$ H؅HNHH\$Hl$ H(f.H\$Hl$H(HT$ HH 1xL$ H؅HIHH\$Hl$ H(f.SHH@HHD$ H$HWHT$HWHT$HWHHT$HD$ HHD$(HCHD$0HCHD$8HCH@[H(/<$oH|$H(ff.SHHO$H$L$HHD$HCH[fSHH  YYOD$L$*$H$L$HHD$HCH [ÐS~H!f[ffff.SHH0YYGL$D$D$ T$ H H HD$~D$!fH0[fffff.AWAVAUATUSH(HL6L'HoH_HD$HBMHD$Lz~;E1I$AT$IH$T$}[;LLd$Hl$M9H([]A\A]A^A_AWAVAUATUSHHL6L'HoH_LzHD$HBMH$~2E1}A$ILLd$H,$M9H[]A\A]A^A_f.AWAVAUATUSHHL6L'HoH_LzHD$HBMH$~2E1}A$ILLd$H,$M9H[]A\A]A^A_f.AWAVAUATUSH(HL6L'HoH_HD$HBMHD$Lz~HH=u?H5uIHHI$HHI$?H#"HOH xH5"H=$Lc%Ht>"H ?"L N&Ha"H$"H(H5"b"H=#b"H TH5 *H=Lb"Ha"H$"LZL a"Ha"L %"H >"H5a"H$H>"H#"H %H=>"H5MH=V(La"L a"LHb>"HC""L l)Ha"H a"HH5>"H !H5r#H+>"HH%>"H&$"H?>"HH#HYa"H!"H+>"H#"H%>"HH=Ga"L >"H=#L$H>"HD$"L %a"H&a"L _H (a"H5)a"H*H="H$"H (H=a"La"H5H=L L ="H="H!"L v"H="H `"HA$H5="H=`"H H="H&L`"H5&H=)L'H`"H "L `"H`"L H ="H5`"H HS="Ht!"H !H=^="H5"H=#H1="H"HK`"H4""H="HLG`"L ="HQ`"L*H3`"H"L %H 6`"H''H H5)`"H=*`"H5{H<"H!"H= L<"L `"Lq!H`"H <"L L"H<"H "HH H5_"H=_"L_"L _"H5!Hv<"H?H_"H _"H=z"LCH\<"Hm"L %HG&H PHY<"Hr"HS<"Ht "HM<"HHg_"HH "HA<"H "H;<"H4"H5U_"H=V_"H5GH=L!<"L B_"H <"HLL H'_"H <"H;"HB"H H5 _"H=M<"H ~!H=<"H=<"H=$HJ_"H "L`"L `"H5`"H5o="H5ؗHy_"H"L_"L\H_"H!"H<"H "H<"HH_"H"H}<"Hf"H="L _"L $H"H_"H H _"H H5<"H_"HYH=r_"H<"H"H5H v_"H O$L<"L I_"H=JLC H<"HL ^H<"H X_"H<"H"H "H"H5_"H=_"H5Hx<"Hy"H=:L^"L t<"LL H5o<"H=^"HA<"H2"H5L^"H ]<"L ^"H<"H("H^"HB<"HcL ^"L H=^"H^"H="L ^"L 2H"L^"H5^"L <"L "LX"H5y"H;"H=;"L ^"L %L;"H5;"L _"L A"L r<"L L ^"L "L ^<"L L ^"L "L J<"L L ^"L L 6<"L !L ^"L L "<"L ;"L ^"L ]L <"L L ^"L aL ^"L "L ;"L %L v^"L "L ;"L L b^"L "L ;"L L N^"L L ;"L a L :^"L L ;"L !L &^"L L ;"L L ^"L L ^"L "L ;"L oL ^"L "L r;"L 3L ]"L ="L ^;"L L ]"L 9L J;"L L ]"L L 6;"L L ]"L L ";"L #L ]"L L ]"L _"L ;"L L ]"L "L :"L }L v]"L w"L :"L L b]"L L \]"L "L :"L WL H]"L "L :"L L 4]"L m"L :"L _L ]"L L ;"L "L ]"L L ;"L L ^"L L "<"L +L ^"L L v<"L ?"L <"L L b<"L "L <"L L N<"L "L <"L L :<"L KL D^"L "L <"L L 0^"L "L <"L sL ^"L U"L <"L wL ^"L L <"L "L L^"L L ="L "L ^"L L ^"L "L <"L L v^"L w"L <"L iL b^"L "L <"L ML N^"L oL <"L L :^"L SL <"L L &^"L gL <"L YL ^"L +L ^"L U"L <"L L ^"L "L r<"L L ]"L "L ^<"L L ]"L L J<"L +L ]"L =L 6<"L OL ]"L 1L "<"L L ]"L uL ]"L 7"L <"L 9L ]"L "L ;"L L v]"L "L ;"L L b]"L L ;"L uL N]"L L ;"L L :]"L {L ;"L L &]"L L (]"L 1"L ;"L L ]"L ="L ;"L GL ]"L "L r;"L +L \"L mL ^;"L L \"L qL J;"L L \"L L 6;"L 7L \"L L \"L #"L \"L -L \"L "L \"L L \"L +"L \"L L \"L "L \"L L \"L "L \"L L v\"L W"L \"L L ;"L sL ;"L L .<"L <"L L Y="L L \"L L ="L FL O]"L L i>"L "L ]"L L >"L ^L G^"L 0L >"L L 3^"L TL >"L FL ^"L L >"L r"L ^"L L ?"L L ^"L L i?"L "L ^"L tL U?"L "L ^"L HL A?"L "L ^"L L -?"L ^L ^"L L ?"L BL ^"L L ?"L L w^"L hL >"L L c^"L L u^"H?"H7L 0L>"LBH@"H\"LE^"H=>"H=?L 8^"H5>"H5JH[_"H4"L-^"L .^"LL 0tH5^"H=^"H_"H,"H m>"Hn>"H H5]"L>"HzH?"H<"H5eL N^"H=G_"LH=IL H?"H?"HM"HH _"H5_"H H=_"L?"H5\Hu?"HL ^"H= LL H[?"H"H^"HvH G?"H5^"H=^"H JHC?"H<"H5L^"L ^"H=`H1?"LL H ?"H"HfH ^"H5?"H 1H=^"L>"H5H>"HL g^"Hx^"H=ILH3^"H$L ͋HVH O^"H5P^"H1^"H"H H=>"L5^"H5L >"H=LHr>"H;"L tHe>"Hn"H_>"HHH]"Hb>"HH"H ]"H ^H5]"H=]"H5 L]"L ]"H=ԵH->"H"LOL H]"H *>"H5]"H=$>"HH="H "H L]"L >"H5H=LL H="HH ?"H ^"H5^"H\H="HH=^"L^"L ?"H5ҌH]"H"H=}H LO L (H^"H"H>"H"H>"H"H>"HH^"H "H>"H5>"HH=^"H5OH=H>"H "H ]"L]"H L ]"LWL 0HQ>"HRH]"H5]"H=M>"H6H]"H"H5AH=H >"L]"L >"H > LWH="HIL "_H>"H5,^"H"Hf]"Hg"H5(^"H=^"H=>"H ]"L^"AH]"H "HL>"Hm"HF>"Hw "H@>"H^LL$A$HD$ H5^IHH`I$HHI$q(H iH g^H5I"H=&"AAHT$H"HL$$H5$^IHHI$HHI$(H5pkH=V[H"AAHt$H|$H5I"H=&"$%H5[IHHxI$HHI$I(LmL ]H\"H5&"H=I"LD$LL$AA$H5E]IHHI$HHI$'H"]HtH5&"H=I"AAHT$H"HD$$=H5\IHHI$HHI$A'H5\H xH"H=I"AAHt$H5_&"HL$$H5l\IHHI$HHI$&H=~LB\H*"H5C&"AH|$H=LI"LD$A$UH5[IHHI$HHI$9&L H[H"H5&"H=(I"ALL$AHD$$H5[IHH4I$HHI$%HЉH i[H5%"H=H"AAHT$H?"HL$$mH5&[IHHI$HHI$1%H5|H=ZH"AAHt$H|$H5l%"H=H"$H5ZIHHLI$HHI$-&LДL XH"H5sH"H=L%" LD$LL$AA$H5XIHHI$HHI$%HXHUH5fH"H=?%"AAHT$HG" HD$$H5aXIHHdI$HHI$%%H5"XH H2"H=+%"AAHt$H53H"HL$ $H5WIHHI$HHI$$H=ԠL5YH"H5%"AH|$H= H"LD$A$)H5XIHH|I$HHI$$L XHXH"H5#8"H=$"ALL$AHD$$H5XIHHI$HHI$#HH \XH56W"H=?8"AAHT$H"HL$$AH5XIHHI$HHI$#H5XH=WH"AAHt$H|$H5`$"H=F"$H5dWIHH I$HHI$"LL :WHg"H5G$"H=F"LD$LL$AA$YH5VIHHI$HHI$ "HWHIH5$"H=F"AAHT$H"HD$$H5VIHH8I$HHI$!H5VH }H"H=?F"AAHt$H5#"HL$$qH5ZVIHHI$HHI$!H=XLSH2"H5E"AH|$H=T#"LD$A$H5SIHHPI$HHI$ L lHUH"H5T"H=5"ALL$AHD$$H5UIHHI$HHI$H H UH5*#"H=E"AAHT$H"HL$$H5UIHHhI$HHI$yH5H=bUHZ"AAHt$H|$H5""H=ME"$H5UIHHI$HHI$LL aTH"H5""H=4E"LD$LL$AA$-H5TIHHI$HHI$qHSHH5""H=E"AAHT$Ho"HD$$H5SIHH I$HHI$ H5SH yH""H=D"AAHt$H5""HL$$EH5ASIHHI$HHI$i H=LPH"H5_D"AH|$H=!"LD$A$H5PIHH$I$HHI$L 8HRH"H5D"H=""ALL$AHD$$]H5_RIHHI$HHI$aHH 3RH5D"H=7""AAHT$H?"HL$$H5QIHH:IHHI$HHI$!L lTH=H!H5W"H=:"ALL$AHD$$)H5S=IHH|I$HHI$u ID$LP0H9VH !=H5S@"H=#"AAHT$H|!HL$$H5<IHHI$HHI$H5<H=<H0!AAHt$H|$H5?"H=v#"$:H5<IHHI$HHI$u ID$LP0VdH5P<IHHOI$HHI$@V-H57IHHI$HHI$u ID$LP0H5;1HH5;HߺwH5;HߺcH5;HߺOH5;Hߺ;H5;Hߺ'H5;1HH5;Hߺ$H5;1HH5;HߺH5;HߺH5;Hߺ H5;HߺH5;HߺH5;HߺyH5;HߺeH5~;HߺQH5H5z;H;H5};Hߺ''TzH5r;HH8T[H5X;HHW(Z8H5:;HHTH5!;HHSH5;HHH5N8H9H5F6HI'HH#"H@H5:LHH HH[]A\H598ID$LP0oH5:H!DLH""鑿@H""HJ!H5@H81 ?H(!H5AH81"ID$LP0?ID$LP0ID$LP07ID$LP0ID$LP0/ID$LP0ID$LP0'ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0KID$LP0ID$LP0CID$LP0ID$LP0;ID$LP0ID$LP03ID$LP0ID$LP0+ID$LP0ID$LP0#ID$LP0ID$LP0ID$LP0wID$LP0ID$LP0oID$LP0ID$LP0gID$LP0ID$LP0_ID$LP0ID$LP0WID$LP0ID$LP0OID$LP0ID$LP0GID$LP0ID$LP0ID$LP0{ID$LP0ID$LP0sID$LP0ID$LP0kID$LP0ID$LP0cID$LP0ID$LP0[ID$LP0ID$LP0SID$LP0ID$LP0KID$LP0ID$LP0CID$LP0ID$LP0;ID$LP0ID$LP03ID$LP0ID$LP0+ID$LP0ID$LP0#ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0ID$LP0 ID$LP0ID$LP0l$f NfT (PT@YHPY) $HXcff.ff.H(Q.zt(HÐCff.ff.ff.cff.sff.3ff.ff.sff.ff.3ff.ff.f(fTJfTJfVH(D$D$L$D$u\$D$f.zuH(fD\$L$\$D$H(f.Cff.#ff.ff.ff.ff.ff.HYHHf.f(H\fWf.wf.sDf(HX I$fWB$HX $ $HXff.ff.ff.ff.Cff.#ff.ff.Y@Hff.f(H\fWf.wf.sDf(HX xH$fW$HX $ $HXff.ff.Hf(Qf.zt f(Hfffff.Sff.ff.ff.ff.cff.ff.ff.ff.Sff.ff.ff.l$l$tSH0H\$Pt$XHT$@L$HH\$ t$(l$ HT$ L$(l$ uzuH0[@H\$t$H$L$H0[fff.cff.#ff.ff.sff.ff.HHD$ T$(H$T$Hffff.H(l$0l$@ws:H(f<$|$<$Nl$H(<$|$<$(l$H(DSff.sff.Sff.Cff.ff.ff.sff.l$|$ffffff.3ff.H(l$0l$@ws:H(f<$|$V<$.l$H(<$|$0<$l$H(Dff.ff.Hl$ zt <$PfDHfff.ff.ff.ff.ff.ff.ff.ff.ff.D$HT$HЉH ~ ujuftlƁ$f(YL$L$f.H H HD$D$uxhHD$D$f(f(YL$T$L$f(fTfUf(fVXCD$(T$L$(TU(VfPIЉ%=t7=(YL$L$.z0u.T$D$f.XCmT$D$ffff.l$|$؋T$%=uNzLD$D$d$l$|$l$l$L$؃ɉL$u1L$܃ɉL$u"% ЉD$%f=tyu5l$|$HD$T$fDt$؅uL$܅$fl$L$؅ut$܅t8t$܃ЉL$%두L$l$f% ЉD$(H\.zt.t)( $o $H\fz6?HÐf(H\f.ztf.t&f( $  $H\Dz&>HÐH(l$0ztt"<$|$l$H(@z>H(fSff.ff.SH\$Ld$HLl$Lt$L|$HL$D$L$D$L$D$L$D$Ld$pDl$xLt$`D|$hL4$D|$c|$L$$Dl$|$ L4$D|$o|$0L$$Dl$l$0L$L$L$L$|$@HD$@l$ HHD$HHCl$|$PHD$PHCHD$XHCHH$HH\$Ld$HLl$Lt$L|$HL$D$L$D$L$D$L$D$Ld$pDl$xLt$`D|$hL4$D|$c|$L$$Dl$|$ L4$D|$|$0L$$Dl$l$0L$L$L$L$|$@HD$@l$ HHD$HHCl$|$PHD$PHCHD$XHCHH$HDSHD$T$HL$ \$(HD$HD$HL$T$\$HL$Љ\$؉T$[USHH(۬$@۬$Pۼ$ۼ$ۼ$ۼ$uz$ (f.f. fD4Bzfۼ$f$|$<$|$pl$p<$|$0ۼ$PH$Pl$0HH$XHCۼ$`H$`HCH$hHC@&&ۼ$HDŽ$HHH$H$HCH$HCH$HCHH([]f.ۼ$pH$pHH$xHCۼ$H$HCH$HCHH([]@@ f.<$|$0|$`\$P|$@|$ 蔻-6;l$0l$`D$P`;f@|$<$|$@|$ l$@ 8<$l$ |$<$|$0пۼ$l$ <$l$0۬${H;H([]ۼ$H$ۼ$HH$HGH$HGH$HGHH([]f.|$<$|$@|$ l$@ 7<$l$ =<$1|$pl$pl$0l$`D$Pl$@l$ gۼ$H$ۼ$HH$HCH$HCH$HC@|$<$|$0Nl$0ۼ$0H$0ۼ$@HH$8HCH$@HCH$HHCWSHH۬$۬$ۼ$ۼ$ۼ$ۼ$pztC@{H;Hİ[z t @~ 5Y<$|$0趵l$0<$|$ 6|$@l$0<$Vl$0l$ l$@1 fD f fD|$HD$H $|$ Ul$ f fD|$HD$H4$4@`<$|$0褴l$0<$|$ $l$0<$|$0Dl$ l$09f<$|$ |$0SHL$\$HD$ T$(HL$HL$HD$\$T$HD$ЉT$؉\$HL$ \$(HD$T$[陻SHHPHD$`H$HD$hHD$HD$pHD$HD$xHD$贶HD$`|$ H$HD$hHD$HD$pHD$HD$xHD$<$ |$0HD$0l$ HHD$8HC|$@HD$@HCHD$HHCHHP[fff.SHH ۬$PH$0H$H$H$8HD$H$@HD$H$H۬$`HD$ۼ$ۼ$ۼ$ۼ$|$ |$0-H۬$۬$ۼ$ۼ$|$p|$`l$ l$0|$@Ht$@HL$HH$H$H4$HL$|$PHD$XHT$PH$HD$H$HT$8HH [@f(HL$XT$$L$x $D$P$D$p $D$8f(϶T$D$0f(Z $D$(f(ƽL$8YD$(YL$0HĨ@f(HL$XT$$L$x $D$P$D$p $D$8f(/T$D$0f(J $D$(f(&L$801YL$0YD$(HĨfWD$L$L$D$L$D$OSfWf(HPf(D$pf(f.L$x$8$0$($ uzf(f.f(zf(\f.f.f(\f.zf.fDf„@"f(\$P\$Pf(f(L$0ھL$0f(f(HP[f.b\f(D/HPf([^f(HP[f(f(L$0T$t$@d$ ,$J:1L$0f.T$t$@-1f(YYf.f(,$f(d$ kd$ \Y.蔱,$f(f(T$ܴ,$f(f(\$P褽T$\$PX^…Xf(HP[f(,$f(d$ طd$ XYn-f(,$X^f(ff(\$P1\$PL$0f.T$d$ ,$t$@Df(T$T$f(f(fDf(HD$@$$\L$H$$f.t{f.zt+fWf(f(f.]Wf(HfWf.f(f.f(ztf(\f.X,f(f.zf( $X $f(f(T$ $D$(f(< $T$f(\f.f(YD$(HYf(f(f(f(\f. f( $身 $f(f(T$B $D$(f(螰T$f(D$(YYf*T$T$Hf(f(f(*f(ff( $gfff.f(L$f(L$L$f(T$T$T$3ff.HXL$(D$ 3L$(f(D$ $ٲ费$HXf(fffff.HD$@L$HT$0\$8$$$$T$$赮D$ HD$ L$(T$H$HD$($$f(f(H$L$p$L$`YYd$xYd$hY\XD$P$L$X$WD$ HD$ L$(H$HD$($H$$Hffffff.HXfD$HD$D$H L$D$H(L$艭D$0D$H(L$D$L(DD$,D$HsYD$,D$,D$,D$0YD$LD$0T$0H H HD$~D$HXfffff.HHfD$HD$D$H L$D$ (L$蹵D$<D$ xL$D$8(贬D$4D$ êYD$4 (D$4D$4D$<YD$8WD$ T$ H H HD$~D$HHfD$HD$HH T$L$D$D$DSWH`fD$HD$D$H T$D$\$.u z .(\..fD(\.z.f¨J(d$0(ad$0D$@(T$@D$D$H H M@.pj\$D$H H $^T$D$d$@T$@H H HD$~D$H`[fD(L$0T$ \$膨.(L$0T$ \$?(YY.(\$(T$ RT$ \YL&k\$((T$ 4\$D$@(T$ T$@XH ^D$\D$\H ЅD$HD$H XH D$@D$@H fH (\$(T$ 葦T$ XY%読D$XD$\$^\$@T$@H H ]f(1.W'L$0T$ \$f(T$ (T$ T$D$D$T$H H SHPfD$HD$D$H T$D$(L$\.tj.zt+. &TNHD$~D$HP[DW..s(\.HH fz(L$ L$ ((T$AL$ D$<( L$ (T$\.L$<YL$<YЋD$<T$@T$@H H 'D(1\. (L$ BL$ ((T$蛧L$ ((\$ dT$\$ Y\$?NULLexpect '->'expect '('expect dimension nameexpect ',' or ')'expect ','%s at position %d in "%s"%s encountered in %sNNwritedivide by zerooverflowunderflowinvalid valueUFUNC_PYVALS%s must be a length 3 list.invalid error mask (%d)NOwrong shape for outputfunction not supportedOO|iO&O&O(O)icannot %s on a scalaraxis not in arrayaddmultiplyreduceaccumulateindex out-of-bounds (0, %d)reduceat__array_wrap__invalid number of argumentsOOi__array_priority____radd__subtract__rsub____rmul____rdiv__true_divide__rtruediv__floor_divide__rfloordiv__remainder__rmod__power__rpow__left_shift__rlshift__right_shift__rrshift__bitwise_and__rand__bitwise_xor__rxor__bitwise_or__ror____array__invalid return array shapereturn array is not writeable__array_prepare__O(OOi)invalid keywordextobjsig(OO)unknown user-defined typetestOiifunction must be callable__name__umathnumpy.core.multiarray_ARRAY_API_UFUNC_API0.4.0__version__DO NOT USE, ONLY FOR TESTING_argabsolutearccosarccosharcsinarcsinharctanarctan2arctanhceilconjugatecopysigndeg2raddegreesexpm1fabsfloorfmaxfminfmodgreatergreater_equalhypotinvertisfiniteisinfisnanlessless_equalloglog10log1plog2logaddexplogaddexp2logical_andlogical_notlogical_orlogical_xormaximumminimummodfnegativenextafternot_equalones_likerad2degradiansreciprocalrintsignbitspacingsqrtsquaretruncfrexpCompute y = x1 * 2**x2.ldexppiERR_IGNOREERR_WARNERR_CALLERR_RAISEERR_PRINTERR_LOGERR_DEFAULTERR_DEFAULT2SHIFT_DIVIDEBYZEROSHIFT_OVERFLOWSHIFT_UNDERFLOWSHIFT_INVALIDFPE_DIVIDEBYZEROFPE_OVERFLOWFPE_UNDERFLOWFPE_INVALIDFLOATING_POINT_SUPPORTUFUNC_PYVALS_NAMEUFUNC_BUFSIZE_DEFAULTPINFNINFPZERONZERONANconjcannot load umath module.numpy.ufuncindicesaxisdtypefrompyfuncseterrobjgeterrobjouter__doc__ninnoutnargsntypesidentitysignaturea type-tuple must be specified of length 1 or %d for %sa type-string for %s, requires %d typecode(s) before and %d after the -> signuser-defined type used in ufunc with no registered loopsdimension of output variable exceeds limit',' must not be followed by ')'incomplete signature: not all arguments foundpython callback specified for %s (in %s) but no function found.Warning: %s encountered in %s log specified for %s (in %s) but no object with write method found.buffer size (%d) is not in range (%ld - %ld) or not a multiple of 16python object must be callable or have a callable write methodconstruct_reduce not allowed on ufunc with signaturezero-size array to ufunc.%s without identityUFUNC_MAXIDENTITY (%d) is too small (needs to be at least %d)Reduction not defined on ufunc with signature%s only supported for binary functions%s only supported for functions returning a single valuecannot perform %s with flexible typereturn arrays must be of ArrayType__array_prepare__ must return an ndarray or subclass thereofnever reached; copy should have been madeObject type not allowed in ufunc with signature'%s' is an invalid keyword to %sillegal loop method for ufunc with signaturemethod outer is not allowed in ufunc with non-trivial signatureouter product only supported for binary functionsexactly two arguments expecteddynamic ufunc based on a python functionmodule compiled against ABI version %x but this version of numpy is %xmodule compiled against API version %x but this version of numpy is %xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimeumath failed: Could not import array core.Calculate the absolute value element-wise. Parameters ---------- x : array_like Input array. Returns ------- res : ndarray An ndarray containing the absolute value of each element in `x`. For complex input, ``a + ib``, the absolute value is :math:`\sqrt{ a^2 + b^2 }`. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) >>> np.absolute(1.2 + 1j) 1.5620499351813308 Plot the function over ``[-10, 10]``: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10, 101) >>> plt.plot(x, np.absolute(x)) >>> plt.show() Plot the function over the complex plane: >>> xx = x + 1j * x[:, np.newaxis] >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10]) >>> plt.show()Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. Returns ------- y : {ndarray, scalar} The sum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``. Parameters ---------- x : array_like `x`-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional Array of the same shape as `a`, to store results in. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `x`-coordinate in radians [0, pi]. If `x` is a scalar then a scalar is returned, otherwise an array of the same shape as `x` is returned. See Also -------- cos, arctan, arcsin, emath.arccos Notes ----- `arccos` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cos(z) = x`. The convention is to return the angle `z` whose real part lies in `[0, pi]`. For real-valued input data types, `arccos` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse `cos` is also known as `acos` or cos^-1. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse trigonometric function", http://en.wikipedia.org/wiki/Inverse_trigonometric_function Examples -------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) Plot arccos: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-1, 1, num=100) >>> plt.plot(x, np.arccos(x)) >>> plt.axis('tight') >>> plt.show()Inverse hyperbolic cosine, elementwise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array of the same shape as `x`, to store results in. See `doc.ufuncs` (Section "Output arguments") for details. Returns ------- y : ndarray Array of the same shape as `x`. See Also -------- cosh, arcsinh, sinh, arctanh, tanh Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]` and the real part in ``[0, inf]``. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccosh` is a complex analytical function that has a branch cut `[-inf, 1]` and is continuous from above on it. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arccosh Examples -------- >>> np.arccosh([np.e, 10.0]) array([ 1.65745445, 2.99322285]) >>> np.arccosh(1) 0.0Inverse sine elementwise. Parameters ---------- x : array_like `y`-coordinate on the unit circle. out : ndarray, optional Array of the same shape as `x`, to store results in. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `y`-coordinate in radians ``[-pi, pi]``. If `x` is a scalar then a scalar is returned, otherwise an array is returned. See Also -------- sin, cos, arccos, tan, arctan, arctan2, emath.arcsin Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sin(z) = x`. The convention is to return the angle `z` whose real part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsin` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arcsin` is a complex analytical function that has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse sine is also known as `asin` or ``sin^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse trigonometric function", http://en.wikipedia.org/wiki/Inverse_trigonometric_function Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0Inverse hyperbolic sine elementwise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : ndarray Array of of the same shape as `x`. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it returns ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the right on the former and from the left on the latter. The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arcsinh Examples -------- >>> np.arcsinh(np.array([np.e, 10.0])) array([ 1.72538256, 2.99822295])Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : array_like Input values. `arctan` is applied to each element of `x`. Returns ------- out : ndarray Out has the same shape as `x`. Its real part is in ``[-pi/2, pi/2]``. It is a scalar if `x` is a scalar. See Also -------- arctan2 : Calculate the arctan of y/x. Notes ----- `arctan` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tan(z) = x`. The convention is to return the angle `z` whose real part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctan` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the left on the former and from the right on the latter. The inverse tangent is also known as `atan` or ``tan^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse trigonometric function", http://en.wikipedia.org/wiki/Arctan Examples -------- We expect the arctan of 0 to be 0, and of 1 to be :math:`\pi/4`: >>> np.arctan([0, 1]) array([ 0. , 0.78539816]) >>> np.pi/4 0.78539816339744828 Plot arctan: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10) >>> plt.plot(x, np.arctan(x)) >>> plt.axis('tight') >>> plt.show()Elementwise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (ie. branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the line segments ``(0,0) - (1,0)`` and ``(0,0) - (x2,x1)``. This function is defined also for `x2` = 0. `arctan2` is not defined for complex-valued arguments. Parameters ---------- x1 : array_like, real-valued y-coordinates. x2 : array_like, real-valued x-coordinates. `x2` must be broadcastable to match the shape of `x1`, or vice versa. Returns ------- angle : ndarray Array of angles in radians, in the range ``[-pi, pi]``. See Also -------- arctan, tan Notes ----- `arctan2` is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard [2]: ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers. References ---------- .. [1] Wikipedia, "atan2", http://en.wikipedia.org/wiki/Atan2 .. [2] ISO/IEC standard 9899:1999, "Programming language C", 1999. Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> np.arctan2([1., -1.], [0., 0.]) array([ 1.57079633, -1.57079633]) >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) array([ 0. , 3.14159265, 0.78539816])Inverse hyperbolic tangent elementwise. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Array of the same shape as `x`. See Also -------- emath.arctanh Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctanh` is a complex analytical function that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arctanh Examples -------- >>> np.arctanh([0, -0.5]) array([ 0. , -0.54930614])Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``&``. Parameters ---------- x1, x2 : array_like Only integer types are handled (including booleans). Returns ------- out : array_like Result. See Also -------- logical_and bitwise_or bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1: >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True], dtype=bool)Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``|``. Parameters ---------- x1, x2 : array_like Only integer types are handled (including booleans). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like Result. See Also -------- logical_or bitwise_and bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 has the binaray representation ``00001101``. Likewise, 16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``000111011``, or 29: >>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101' >>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6]) >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True], dtype=bool)Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``^``. Parameters ---------- x1, x2 : array_like Only integer types are handled (including booleans). Returns ------- out : array_like Result. See Also -------- logical_xor bitwise_and bitwise_or binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28: >>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False], dtype=bool)Return the ceiling of the input, element-wise. The ceil of the scalar `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\lceil x \rceil`. Parameters ---------- x : array_like Input data. Returns ------- y : {ndarray, scalar} The ceiling of each element in `x`, with `float` dtype. See Also -------- floor, trunc, rint Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.])Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The complex conjugate of `x`, with same dtype as `y`. Examples -------- >>> np.conjugate(1+2j) (1-2j) >>> x = np.eye(2) + 1j * np.eye(2) >>> np.conjugate(x) array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]])Change the sign of x1 to that of x2, element-wise. If both arguments are arrays or sequences, they have to be of the same length. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1: array_like Values to change the sign of. x2: array_like The sign of `x2` is copied to `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like The values of `x1` with the sign of `x2`. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> np.copysign([-1, 0, 1], -1.1) array([-1., -0., -1.]) >>> np.copysign([-1, 0, 1], np.arange(3)-1) array([-1., 0., 1.])Cosine elementwise. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding cosine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00]) >>> >>> # Example of providing the optional output parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeHyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Output array of same shape as `x`. Examples -------- >>> np.cosh(0) 1.0 The hyperbolic cosine describes the shape of a hanging cable: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show()Convert angles from degrees to radians. Parameters ---------- x : array_like Angles in degrees. Returns ------- y : ndarray The corresponding angle in radians. See Also -------- rad2deg : Convert angles from radians to degrees. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 ``deg2rad(x)`` is ``x * pi / 180``. Examples -------- >>> np.deg2rad(180) 3.1415926535897931Convert angles from radians to degrees. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as x. Returns ------- y : ndarray of floats The corresponding degree values. See Also -------- rad2deg : equivalent function Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.)*np.pi/6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out = np.zeros((rad.shape)) >>> r = degrees(rad, out) >>> np.all(r == out) TrueDivide arguments element-wise. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : {ndarray, scalar} The quotient `x1/x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. See Also -------- seterr : Set whether to raise or warn on overflow, underflow and division by zero. Notes ----- Equivalent to `x1` / `x2` in terms of array-broadcasting. Behavior on division by zero can be changed using `seterr`. When both `x1` and `x2` are of an integer type, `divide` will return integers and throw away the fractional part. Moreover, division by zero always yields zero in integer arithmetic. Examples -------- >>> np.divide(2.0, 4.0) 0.5 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[ NaN, 1. , 1. ], [ Inf, 4. , 2.5], [ Inf, 7. , 4. ]]) Note the behavior with integer types: >>> np.divide(2, 4) 0 >>> np.divide(2, 4.) 0.5 Division by zero always yields zero in integer arithmetic, and does not raise an exception or a warning: >>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int)) array([0, 0]) Division by zero can, however, be caught using `seterr`: >>> old_err_state = np.seterr(divide='raise') >>> np.divide(1, 0) Traceback (most recent call last): File "", line 1, in FloatingPointError: divide by zero encountered in divide >>> ignored_states = np.seterr(**old_err_state) >>> np.divide(1, 0) 0Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays of the same shape. Returns ------- out : {ndarray, bool} Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal([0, 1, 3], np.arange(3)) array([ True, True, False], dtype=bool) What is compared are values, not types. So an int (1) and an array of length one can evaluate as True: >>> np.equal(1, np.ones(1)) array([ True], dtype=bool)Calculate the exponential of all elements in the input array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Output array, element-wise exponential of `x`. See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array. Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \ln y = \log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive. For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^{ib}`, is :math:`\cos b + i \sin b`, a function with magnitude 1 and a periodic phase. References ---------- .. [1] Wikipedia, "Exponential function", http://en.wikipedia.org/wiki/Exponential_function .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx) >>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Magnitude of exp(x)') >>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Phase (angle) of exp(x)') >>> plt.show()Calculate `2**p` for all `p` in the input array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array to insert results into. Returns ------- out : ndarray Element-wise 2 to the power `x`. See Also -------- exp : calculate x**p. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> np.exp2([2, 3]) array([ 4., 8.])Calculate ``exp(x) - 1`` for all elements in the array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Element-wise exponential minus one: ``out = exp(x) - 1``. See Also -------- log1p : ``log(1 + x)``, the inverse of expm1. Notes ----- This function provides greater precision than the formula ``exp(x) - 1`` for small values of ``x``. Examples -------- The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to about 32 significant digits. This example shows the superiority of expm1 in this case. >>> np.expm1(1e-10) 1.00000000005e-10 >>> np.exp(1e-10) - 1 1.000000082740371e-10Compute the absolute values elementwise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : array_like The array of numbers for which the absolute values are required. If `x` is a scalar, the result `y` will also be a scalar. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : {ndarray, scalar} The absolute values of `x`, the returned values are always floats. See Also -------- absolute : Absolute values including `complex` types. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs([-1.2, 1.2]) array([ 1.2, 1.2])Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\lfloor x \rfloor`. Parameters ---------- x : array_like Input data. Returns ------- y : {ndarray, scalar} The floor of each element in `x`. See Also -------- ceil, trunc, rint Notes ----- Some spreadsheet programs calculate the "floor-towards-zero", in other words ``floor(-2.5) == -2``. NumPy, however, uses the a definition of `floor` such that `floor(-2.5) == -3`. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.])Return the largest integer smaller or equal to the division of the inputs. Parameters ---------- x1 : array_like Numerator. x2 : array_like Denominator. Returns ------- y : ndarray y = floor(`x1`/`x2`) See Also -------- divide : Standard division. floor : Round a number to the nearest integer toward minus infinity. ceil : Round a number to the nearest integer toward infinity. Examples -------- >>> np.floor_divide(7,3) 2 >>> np.floor_divide([1., 2., 3., 4.], 2.5) array([ 0., 0., 1., 1.])Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a nan, then the non-nan element is returned. If both elements are nans then the first is returned. The latter distinction is important for complex nans, which are defined as at least one of the real or imaginary parts being a nan. The net effect is that nans are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : {ndarray, scalar} The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmin : element-wise minimum that ignores nans unless both inputs are nans. maximum : element-wise maximum that propagates nans. minimum : element-wise minimum that propagates nans. Notes ----- .. versionadded:: 1.3.0 The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.fmax([2, 3, 4], [1, 5, 2]) array([ 2., 5., 4.]) >>> np.fmax(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN])fmin(x1, x2[, out]) Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a nan, then the non-nan element is returned. If both elements are nans then the first is returned. The latter distinction is important for complex nans, which are defined as at least one of the real or imaginary parts being a nan. The net effect is that nans are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : {ndarray, scalar} The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmax : element-wise maximum that ignores nans unless both inputs are nans. maximum : element-wise maximum that propagates nans. minimum : element-wise minimum that propagates nans. Notes ----- .. versionadded:: 1.3.0 The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.fmin([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.fmin(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN])Return the element-wise remainder of division. This is the NumPy implementation of the Python modulo operator `%`. Parameters ---------- x1 : array_like Dividend. x2 : array_like Divisor. Returns ------- y : array_like The remainder of the division of `x1` by `x2`. See Also -------- remainder : Modulo operation where the quotient is `floor(x1/x2)`. divide Notes ----- The result of the modulo operation for negative dividend and divisors is bound by conventions. In `fmod`, the sign of the remainder is the sign of the dividend. In `remainder`, the sign of the divisor does not affect the sign of the result. Examples -------- >>> np.fmod([-3, -2, -1, 1, 2, 3], 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder([-3, -2, -1, 1, 2, 3], 2) array([1, 0, 1, 1, 0, 1]) >>> np.fmod([5, 3], [2, 2.]) array([ 1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, [2,2]) array([[-1, 0], [-1, 0], [ 1, 0]])Return (x1 > x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. Returns ------- Out : {ndarray, bool} Output array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater_equal, less, less_equal, equal, not_equal Examples -------- >>> np.greater([4,2],[2,2]) array([ True, False], dtype=bool) If the inputs are ndarrays, then np.greater is equivalent to '>'. >>> a = np.array([4,2]) >>> b = np.array([2,2]) >>> a > b array([ True, False], dtype=bool)Return (x1 >= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. Returns ------- out : {ndarray, bool} Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- greater, less, less_equal, equal, not_equal Examples -------- >>> np.greater_equal([4, 2, 1], [2, 2, 2]) array([ True, True, False], dtype=bool)Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- z : ndarray The hypotenuse of the triangle(s). Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]])Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. For signed integer inputs, the two's complement is returned. In a two's-complement system negative numbers are represented by the two's complement of the absolute value. This is the most common method of representing signed integers on computers [1]_. A N-bit two's-complement system can represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. Parameters ---------- x1 : array_like Only integer types are handled (including booleans). Returns ------- out : array_like Result. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True References ---------- .. [1] Wikipedia, "Two's complement", http://en.wikipedia.org/wiki/Two's_complement Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> np.invert(np.array([13], dtype=uint8)) array([242], dtype=uint8) >>> np.binary_repr(x, width=8) '00001101' >>> np.binary_repr(242, width=8) '11110010' The result depends on the bit-width: >>> np.invert(np.array([13], dtype=uint16)) array([65522], dtype=uint16) >>> np.binary_repr(x, width=16) '0000000000001101' >>> np.binary_repr(65522, width=16) '1111111111110010' When using signed integer types the result is the two's complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(array([True, False])) array([False, True], dtype=bool)Test element-wise for finite-ness (not infinity or not Not a Number). The result is returned as a boolean array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- y : ndarray, bool For scalar input, the result is a new boolean with value True if the input is finite; otherwise the value is False (input is either positive infinity, negative infinity or Not a Number). For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is finite; otherwise the values are False (element is either positive infinity, negative infinity or Not a Number). See Also -------- isinf, isneginf, isposinf, isnan Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(np.NINF) False >>> np.isfinite([np.log(-1.),1.,np.log(0)]) array([False, True, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isfinite(x, y) array([0, 1, 0]) >>> y array([0, 1, 0])Test element-wise for positive or negative infinity, return result as bool array. Parameters ---------- x : array_like Input values y : array_like, optional An array with the same shape as `x` to store the result. Returns ------- y : {ndarray, bool} For scalar input, the result is a new boolean with value True if the input is positive or negative infinity; otherwise the value is False. For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is positive or negative infinity; otherwise the values are False. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value `y` is then a reference to that array. See Also -------- isneginf, isposinf, isnan, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if second argument is also supplied with scalar input or if first and second arguments have different shapes. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1])Test element-wise for Not a Number (NaN), return result as a bool array. Parameters ---------- x : array_like Input array. Returns ------- y : {ndarray, bool} For scalar input, the result is a new boolean with value True if the input is NaN; otherwise the value is False. For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is NaN; otherwise the values are False. See Also -------- isinf, isneginf, isposinf, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan([np.log(-1.),1.,np.log(0)]) array([ True, False, False], dtype=bool)Shift the bits of an integer to the left. Bits are shifted to the left by appending `x2` 0s at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying `x1` by ``2**x2``. Parameters ---------- x1 : array_like of integer type Input values. x2 : array_like of integer type Number of zeros to append to `x1`. Returns ------- out : array of integer type Return `x1` with bits shifted `x2` times to the left. See Also -------- right_shift : Shift the bits of an integer to the right. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100' >>> np.left_shift(5, [1,2,3]) array([10, 20, 40])Return (x1 < x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. Returns ------- Out : ndarray of bools Output array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- less_equal, greater, greater_equal, equal, not_equal Examples -------- >>> np.less([1, 2], [2, 2]) array([ True, False], dtype=bool)Return (x1 <= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. Returns ------- Out : {ndarray, bool} Output array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- less, greater_equal, greater, equal, not_equal Examples -------- >>> np.less_equal([1, 2, 3], [2, 2, 2]) array([ True, True, False], dtype=bool)Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. See Also -------- log10, log2, log1p, emath.log Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf])Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. See Also -------- emath.log10 Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `10**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log10` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log10` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log10` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log10([1e-15, -3.]) array([-15., NaN])Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Natural logarithm of `1 + x`, element-wise. See Also -------- expm1 : ``exp(x) - 1``, the inverse of `log1p`. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log1p` is a complex analytical function that has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log1p(1e-99) 1e-99 >>> np.log(1 + 1e-99) 0.0Base-2 logarithm of `x`. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Base-2 logarithm of `x`. See Also -------- log, log10, log1p, emath.log2 Notes ----- .. versionadded:: 1.3.0 Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `2**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log2` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log2` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log2` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. Returns ------- result : ndarray Logarithm of ``exp(x1) + exp(x2)``. See Also -------- logaddexp2: Logarithm of the sum of exponentiations of inputs in base-2. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50Logarithm of the sum of exponentiations of the inputs in base-2. Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine learning when the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. out : ndarray, optional Array to store results in. Returns ------- result : ndarray Base-2 logarithm of ``2**x1 + 2**x2``. See Also -------- logaddexp: Logarithm of the sum of exponentiations of the inputs. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log2(1e-50) >>> prob2 = np.log2(2.5e-50) >>> prob12 = np.logaddexp2(prob1, prob2) >>> prob1, prob2, prob12 (-166.09640474436813, -164.77447664948076, -164.28904982231052) >>> 2**prob12 3.4999999999999914e-50Compute the truth value of x1 AND x2 elementwise. Parameters ---------- x1, x2 : array_like Input arrays. `x1` and `x2` must be of the same shape. Returns ------- y : {ndarray, bool} Boolean result with the same shape as `x1` and `x2` of the logical AND operation on corresponding elements of `x1` and `x2`. See Also -------- logical_or, logical_not, logical_xor bitwise_and Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and([True, False], [False, False]) array([False, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_and(x>1, x<4) array([False, False, True, True, False], dtype=bool)Compute the truth value of NOT x elementwise. Parameters ---------- x : array_like Logical NOT is applied to the elements of `x`. Returns ------- y : {ndarray, bool} Boolean result with the same shape as `x` of the NOT operation on elements of `x`. See Also -------- logical_and, logical_or, logical_xor Examples -------- >>> np.logical_not(3) False >>> np.logical_not([True, False, 0, 1]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True], dtype=bool)Compute the truth value of x1 OR x2 elementwise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. They have to be of the same shape. Returns ------- y : {ndarray, bool} Boolean result with the same shape as `x1` and `x2` of the logical OR operation on elements of `x1` and `x2`. See Also -------- logical_and, logical_not, logical_xor bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or([True, False], [False, False]) array([ True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_or(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool)Compute the truth value of x1 XOR x2 elementwise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. They have to be of the same shape. Returns ------- y : {ndarray, bool} Boolean result with the same shape as `x1` and `x2` of the logical XOR operation on elements of `x1` and `x2`. See Also -------- logical_and, logical_or, logical_not bitwise_xor Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool)Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a nan, then that element is returned. If both elements are nans then the first is returned. The latter distinction is important for complex nans, which are defined as at least one of the real or imaginary parts being a nan. The net effect is that nans are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : {ndarray, scalar} The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- minimum : element-wise minimum fmax : element-wise maximum that ignores nans unless both inputs are nans. fmin : element-wise minimum that ignores nans unless both inputs are nans. Notes ----- Equivalent to ``np.where(x1 > x2, x1, x2)`` but faster and does proper broadcasting. Examples -------- >>> np.maximum([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.maximum(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.maximum(np.Inf, 1) infElement-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a nan, then that element is returned. If both elements are nans then the first is returned. The latter distinction is important for complex nans, which are defined as at least one of the real or imaginary parts being a nan. The net effect is that nans are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : {ndarray, scalar} The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- maximum : element-wise minimum that propagates nans. fmax : element-wise maximum that ignores nans unless both inputs are nans. fmin : element-wise minimum that ignores nans unless both inputs are nans. Notes ----- The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ NaN, NaN, NaN])Return the fractional and integral parts of an array, element-wise. The fractional and integral parts are negative if the given number is negative. Parameters ---------- x : array_like Input array. Returns ------- y1 : ndarray Fractional part of `x`. y2 : ndarray Integral part of `x`. Notes ----- For integer input the return values are floats. Examples -------- >>> np.modf([0, 3.5]) (array([ 0. , 0.5]), array([ 0., 3.])) >>> np.modf(-0.5) (-0.5, -0)Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. Returns ------- y : ndarray The product of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]])Returns an array with the negative of each element of the original array. Parameters ---------- x : {array_like, scalar} Input array. Returns ------- y : {ndarray, scalar} Returned array or scalar `y=-x`. Examples -------- >>> np.negative([1.,-1.]) array([-1., 1.])Return the next representable floating-point value after x1 in the direction of x2 element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : array_like The next representable values of `x1` in the direction of `x2`. Examples -------- >>> eps = np.finfo(np.float64).eps >>> np.nextafter(1, 2) == eps + 1 True >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] array([ True, True], dtype=bool)Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. out : ndarray, optional A placeholder the same shape as `x1` to store the result. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- not_equal : ndarray bool, scalar bool For each element in `x1, x2`, return True if `x1` is not equal to `x2` and False otherwise. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal([1.,2.], [1., 3.]) array([False, True], dtype=bool) >>> np.not_equal([1, 2], [[1, 3],[1, 4]]) array([[False, True], [False, True]], dtype=bool)Returns an array of ones with the same shape and type as a given array. Equivalent to ``a.copy().fill(1)``. Please refer to the documentation for `zeros_like`. See Also -------- zeros_like Examples -------- >>> a = np.array([[1, 2, 3], [4, 5, 6]]) >>> np.ones_like(a) array([[1, 1, 1], [1, 1, 1]])Returns element-wise base array raised to power from second array. Raise each base in `x1` to the power of the exponents in `x2`. This requires that `x1` and `x2` must be broadcastable to the same shape. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]])Convert angles from radians to degrees. Parameters ---------- x : array_like Angle in radians. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The corresponding angle in degrees. See Also -------- deg2rad : Convert angles from degrees to radians. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 rad2deg(x) is ``180 * x / pi``. Examples -------- >>> np.rad2deg(np.pi/2) 90.0Convert angles from degrees to radians. Parameters ---------- x : array_like Input array in degrees. out : ndarray, optional Output array of same shape as x. Returns ------- y : ndarray The corresponding radian values. See Also -------- deg2rad : equivalent function Examples -------- Convert a degree array to radians >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 , 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898, 5.23598776, 5.75958653]) >>> out = np.zeros((deg.shape)) >>> ret = np.radians(deg, out) >>> ret is out TrueReturn the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray Return array. Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. Examples -------- >>> np.reciprocal(2.) 0.5 >>> np.reciprocal([1, 2., 3.33]) array([ 1. , 0.5 , 0.3003003])Return element-wise remainder of division. Computes ``x1 - floor(x1 / x2) * x2``. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The remainder of the quotient ``x1/x2``, element-wise. Returns a scalar if both `x1` and `x2` are scalars. See Also -------- divide, floor Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. Examples -------- >>> np.remainder([4, 7], [2, 3]) array([0, 1]) >>> np.remainder(np.arange(7), 5) array([0, 1, 2, 3, 4, 0, 1])Shift the bits of an integer to the right. Bits are shifted to the right by removing `x2` bits at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to dividing `x1` by ``2**x2``. Parameters ---------- x1 : array_like, int Input values. x2 : array_like, int Number of bits to remove at the right of `x1`. Returns ------- out : ndarray, int Return `x1` with bits shifted `x2` times to the right. See Also -------- left_shift : Shift the bits of an integer to the left. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(10) '1010' >>> np.right_shift(10, 1) 5 >>> np.binary_repr(5) '101' >>> np.right_shift(10, [1,2,3]) array([5, 2, 1])Round elements of the array to the nearest integer. Parameters ---------- x : array_like Input array. Returns ------- out : {ndarray, scalar} Output array is same shape and type as `x`. See Also -------- ceil, floor, trunc Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 2., 2., 2.])Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The sign of `x`. Examples -------- >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0Returns element-wise True where signbit is set (less than zero). Parameters ---------- x: array_like The input value(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like, bool Output array. Examples -------- >>> np.signbit(-1.2) True >>> np.signbit(np.array([1, -2.3, 2.1])) array([False, True, False], dtype=bool)Trigonometric sine, element-wise. Parameters ---------- x : array_like Angle, in radians (:math:`2 \pi` rad equals 360 degrees). Returns ------- y : array_like The sine of each element of x. See Also -------- arcsin, sinh, cos Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\pi / 2` to +1 for :math:`\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\pi`. Sines of angles between :math:`\pi` and :math:`2\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text. Examples -------- Print sine of one angle: >>> np.sin(np.pi/2.) 1.0 Print sines of an array of angles given in degrees: >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ]) Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle [rad]') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show()Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic sine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic. >>> # Example of providing the optional output parameter >>> out2 = np.sinh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeReturn the distance between x and the nearest adjacent number. Parameters ---------- x1: array_like Values to find the spacing of. Returns ------- out : array_like The spacing of values of `x1`. Notes ----- It can be considered as a generalization of EPS: ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and nan is nan. Examples -------- >>> np.spacing(1, 2) == np.finfo(np.float64).eps TrueReturn the positive square-root of an array, element-wise. Parameters ---------- x : array_like The square root of each element in this array is calculated. Returns ------- y : ndarray An array of the same shape as `x`, containing the square-root of each element in `x`. If any element in `x` is complex, a complex array is returned. If all of the elements of `x` are real, negative elements return numpy.nan elements. See Also -------- numpy.lib.scimath.sqrt A version which returns complex numbers when given negative reals. Notes ----- `sqrt` has a branch cut ``[-inf, 0)`` and is continuous from above on it. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, numpy.inf]) array([ 2., NaN, Inf])Return the element-wise square of the input. Parameters ---------- x : array_like Input data. Returns ------- out : ndarray Element-wise `x*x`, of the same shape and dtype as `x`. Returns scalar if `x` is a scalar. See Also -------- numpy.linalg.matrix_power sqrt power Examples -------- >>> np.square([-1j, 1]) array([-1.-0.j, 1.+0.j])Subtract arguments, element-wise. Parameters ---------- x1, x2 : array_like The arrays to be subtracted from each other. Returns ------- y : ndarray The difference of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to ``x1 - x2`` in terms of array broadcasting. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[ 0., 0., 0.], [ 3., 3., 3.], [ 6., 6., 6.]])Compute tangent element-wise. Equivalent to ``np.sin(x)/np.cos(x)`` element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> from math import pi >>> np.tan(np.array([-pi,pi/2,pi])) array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16]) >>> >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeCompute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Hyperbolic function", http://en.wikipedia.org/wiki/Hyperbolic_function Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j]) >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.tanh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeReturns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. Returns ------- out : ndarray Result is scalar if both inputs are scalar, ndarray otherwise. Notes ----- The floor division operator ``//`` was added in Python 2.2 making ``//`` and ``/`` equivalent operators. The default floor division operation of ``/`` can be replaced by true division with ``from __future__ import division``. In Python 3.0, ``//`` is the floor division operator and ``/`` the true division operator. The ``true_divide(x1, x2)`` function is equivalent to true division in Python. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x/4 array([0, 0, 0, 0, 1]) >>> x//4 array([0, 0, 0, 0, 1]) >>> from __future__ import division >>> x/4 array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x//4 array([0, 0, 0, 0, 1])Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. Returns ------- y : {ndarray, scalar} The truncated value of each element in `x`. See Also -------- ceil, floor, rint Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.])Split the number, x, into a normalized fraction (y1) and exponent (y2)function not supported for these types, and can't coerce safely to supported typesError object must be a list of length 3@ppqp`qo?CMbP?+eG?&{??m۶m?333333?UUUUUU?m۶m333333UUUUUUտ0 0 ܿUUUUUUſ0 0 ??UUUUUU?9B.?-DT! @iW @??;?[>?>ff澫*ff>*>r1?q(7[?]tE]t?qq?۶m۶m۶???]tE]tqq۶m۶m۶T<%S988baafffffffT<%S?988?baa?fffffff??ý.@5?.eB5~y2y?;=0X0px`X`@ (ppP` @ ``  P8 P Мh 0 p @ !(!`@!X!!@!!!0!" 0"`H"`"x" "`"""#Ц0# P#ph###0#p###0$Щ($p@$h$$P$$$P%%Ю0%H%P`%x%Я%0%%%@&8&P& h&`&&&0&p&&'@('@'X'`p'''@'''0(8( P(`h((( (`(()p()@)X)`p))н) )`))* *0*`H*`*x*@***@*+(+@+@X+p++ +`++ ,p,0,H,P`,x,, ,`,,,0-p -8-PP-h--0--p--.0.0H.p`.x..0...0/p /8/P/0h/p///@///`0(0@0@X0p00 000@1 181P1@h111@1112P(2@2X20p2`22202p233030H3`3px333P33@484X40x44404p45005H5`5x5@5505p556 6086P6ph666P66@7(7H70h77707p780 888 X8`p888P8889P909H9`9x9P999099p:@:``:::P::;P ;8;`;Px;;; ;`;;P< <8<P<h<P<<<0<<p=0=`P=p==P===P > (> P>P h> >@ > > > >p ? ? 0?PH?`?@????P?@ @`@@`@@x@@@@`@@@A A 8A`PAhAAA`AA@AAB (B@B `BBBB@BBC` C@C@XCpCC CpCCPCD0 Dp 0D HD `D0!xD!D!D"D #D#D`$E% E`%@E%`E&xE@&E&E&EP'E'F`( F(8F(PF@)hF)F)F0*F*F*FP+G+G+0G,HGP,hG,G,G`-G-G .G.G/Hp/(H/@HP0XH0xH 1H1H02H2H03I3(I3@IP4XI4pI4I@5I6I6I@7J7J80J8HJ@9`J9xJ0:J:J;J;J;J`<K<8Kp=XK>xKp>K>KP?K?K@KP@L@ LAPL BhLBL`CLDLPDLDLELEM F(MF@M@GXMGxM@HMHM0IMIMIM0JN@K0NKXNLNLNLNLNPMNMOM(OM@O NXOPNpO`NONONONONONPNPpPhP QPPQP RPSPT0QPUxQUQVRpWPR0aS bXS@cxSPdSdSk Tl8TnhToTpTpTpT@sU@t@U~UUU V0(VVV0WWW@X`XPXXpYHY`YYZPPZPZZ8[[ [ \p\p\] P]]]p0^x^P^_P(_H_@p_P___ _`(`H``h`@`` `` a (a HaP ha a0 a a apb@bhbPbb`cHc c c8d dd eXe ee00fxf@fg@PggPg(hpph@hiXiPii8jp j!j!kp"Xk#k#kP$0l$xl%l0&m&Pmp'm(m((n)xn@*n0+o+Xo,o@-o .@p.p/p0 q1hq2q2q 3@r3r04r4s@5`s5s 6s`6s6t6 t:ht=tP@t@u@(u@HupCxuEuPHuJvK@v Lhv`LvLv MvOvR(wpT`wWw Xw Yw@YxY0xYPx[x]x_xa ybPypcxycydypdydydz0e0zPePzepz0fzf{0gH{g{@h{h |i8|0|@|P|`|p|} }8}P}h}Я}}`}p}}~~0~H~`~P~`~p~~~0бH`P`pв0H`x 0@؀`г(@Xp 0Pд(@ X0p@P`0(@@PX`ppЃж0Hpx؄з H`xи؅ H`x 0؆@P` p8Phм@ȇ0(@@PX`p8p`pȉP0 @``0(P`xzRx Dt[BBB B(A0A8DPB8A0A(B BBBDd0tfBBB B(A0A8DPM8A0A(B BBBDXtxBBB B(A0A8D`_8A0A(B BBBDtBBB B(A0A8D`m8A0A(B BBBD<t[BBB B(A0A8DPB8A0A(B BBBDtxBBB B(A0A8D`_8A0A(B BBBD(ucBBB B(A0A8D`J8A0A(B BBBLPuBBB B(A0A8Ds8A0A(B BBBDdujBBB B(A0A8D`Q8A0A(B BBBLuBBB B(A0A8D8A0A(B BBBLvBBB B(A0A8D8A0A(B BBBLLhvBBB B(A0A8D8A0A(B BBBDwrBBB B(A0A8D`Y8A0A(B BBBL@wBBB B(A0A8D8A0A(B BBBD4wBBB B(A0A8Dpk8A0A(B BBBL|wBBB B(A0A8D8A0A(B BBBxQAOxOAM xQAO,8yQAOLxyQAOlyQAO$yAV I u$zAL C c A $H{bAA^A{TAR${TARD|7\8|7t`|)x|)|:|G|7}9@}7h}94}L~$d~AN A I($AN A P$8AN A P$><>T>l8>`>>QAOGAE$ eAAaA hLAJ< LAJ\ ȃKt ) : @G x7 9 Ȅ7 9 4 $L (AN A It  ( $ 8AN A P$ AN A P H>$ p>< >T >l > > 8QAO xGAE$ eAAaA LAJ$ LAJD PK\ 7t @ ؋7 T H+ `; G 7 :4 8L 8:d `|  p   $ AO H Q$AO H QD>\ȑ>t>>@>h>SAQВ>$ eAAaA4@BLxBdK|+;(G`7:8 ؔ:$<Tl $0AO H Q$AO H Q@>h>4>L>d>|>0SAQp>$eAAaAB B$PK<7TAl>VX,p9CМ58 :,H8Dp\t$AL C L$AL C L$<<<T<l<0<X<RAP<$_AA[A >,H>DpE\,t9G 5H8p:8H4ХLXd|h$AL C L$hAL C L<<0<,X<D<\<tЩRAP<$8_AA[Ap>>K54 >LH<dpQ|-Ы;F07X:8 :$Ь<XTlhx$AN A N$xAN A NEAC$ EACDPEACdEACEACEACQAOP=$xcAA_A$A<AT0Flh-;@7h:8:,hD\xt$AN A N$AN A NEAC0EAC4`EACTEACtEACEAC QAO`=$cAA_AкA,AD@Ad7|D >HW-;мF 7$0:<X8T:l0@ȿP$AN A N$$ PAN A NL EACl EAC (EAC XEAC EAC EAC !QAO,!(=$D!PcAA_Al!A!A!F!@-!X;!!7"@:,"h8D":\"t"@""P""`$"AN A N$#`AN A N<#EAC\#EAC|#8EAC#hEAC#EAC#EAC#QAO$8=$4$`cAA_A\$At$A$A$7$D$>$ W %h$%<%xT%l%PAN%PAN%?%?%8?%`? &`A^,&cAaL&Al&C&;&N& ?&HB&f&f'0f,'fD'=\'<t'0,'H5'pN'<''X((h4(L(xQAOl(QAO(@( @(H@(p@(bA` )eAc,)8AL)Dd)<|)Q)P@)xB)m)m)`m *m$*=<*8=T*`3l*7*X*=* **@*+P,+QAOL+QAOl+X@+@+B+B+aA_+hoAm ,A,,8FD,p8\,Ot,:,MAK,(W,pW,_,W -H7$-p9<-:T-=A{t-@-7-0-U-U-8o.k.k4.@kL.kd.`A^.0cAa.{Ay.A.PA/Q/P4/PnL/Ud/]|/83/`B,/BAA AB/(/ 08$0<0HUT0Ul0q0@n0n0n0Hn0bA`1eAc$1@A}D1Ad1A1S1R1 t1W1_1;2@E,,2xBAA AB\2(t22822HI2I2U33x43L3hd3uAs3@}A{3^33`^3I4EAC$4$<4vAAG0gDA4d4`BFD A(~  ABBH 44/Hf4!4T5P#5hX45L50d5$|5 5*5 5 5 5  6 L$6BBB B(D0A8De8A0A(B BBBt6A I 6*D[ I A$6LN@i E $6HZ0 E 47bAHL  CAH zFAD<7HBEB B(A0A8D`8A0A(B BBBD7BBE B(A0A8DP8A0A(B BBBD7(BEB B(A0A8D`8A0A(B BBBD8BEB B(A0A8DP8A0A(B BBB\8 BBB B(D0D8G 8F0A(B BBBE 4 8A0A(B BBBB  8C0A(B BBBA R 8C0A(B BBBA  8C0A(B BBBA L9 BBE A(A0 (A BEBG M (A BBBD d9 A G ,9BDA  AEE $9UAUx AA L9BBE E(I0A8D 8A0A(B BBBA ,::D@u,D:MMQ) D $t:LN0j D :X]0e::ALL d$:\MV0 J ,;(MN0b C O I LL;d BBE E(D0D8G 8D0A(B BBBE L;)H)BBB B(D0G8J 8A0A(B BBBD ;R <R <Rd4<RBBB B(A0A8Jc 8A0A(B BBBG c 8A0A(B BBBB L<XTBBB B(A0A8G  8A0A(B BBBE L<oBBB B(A0D8G  8A0A(B BBBA L<=hBBB B(A0A8J [ 8A0A(B BBBG $=LM[P\ D =0BBB E(D0A8I* 8A0A(B BBBC Z 8F0A(B BBBG D 8F0A(B BBBE N 8C0A(B BBBA L>hZ K K ,l>(AP0C AK z AE $>[PF G D>@aBBB B(A0A8D@H8A0A(B BBBD ?haBBB B(A0A8D@H8A0A(B BBBDT?tBBB B(A0A8D`[8A0A(B BBB$?ȗsN0 C bD? BBB B(A0A8D`8A0A(B BBBL @ؘnBBB B(A0A8DU8A0A(B BBBD\@BBB B(A0A8D`8A0A(B BBBL@uBBB B(A0A8D\8A0A(B BBBL@BBB B(A0A8D8A0A(B BBBLDA`#BBB B(A0A8D 8A0A(B BBBLA@CBBB B(A0A8D*8A0A(B BBBDA@xBBB B(A0A8DP_8A0A(B BBBL,BxIBBB B(A0A8D08A0A(B BBBD|BxxBBB B(A0A8DP_8A0A(B BBBLB'BBB B(A0A8D8A0A(B BBBDCxBBB B(A0A8D`_8A0A(B BBBD\CȠBBB B(A0A8D`8A0A(B BBBDC@BBB B(A0A8D`8A0A(B BBBLCBBB B(A0A8D8A0A(B BBBDN^n~΢ޢ.>N^n~Σޣ.>N^n~Τޤ.>N^n~Υޥ.>N^n~Φަ.>N^n~Χާ.>N^n~Ψި.>N^n~Ωީ.>N^n~Ϊު.>N^n~Ϋޫ.>N^n~άެ.>N^n~έޭ.>N^n~ήޮ.>N^n~ίޯ.>N^n~ΰް.>N^n~αޱ.>Nloop written to specified type(s) not found                                                                                      ???       $А 0`{p` pzPzy0@pq` puPP $$l t y  t y   P  0P P` 0@0;0FPQp%%P&`0 'p1@<G`R]i[bjqy(`@@0@pp) P@00*0 &:EQYPen^eS S@RQP0P@ONMMP3 >`IP;ES S@RQP0P@ONMM  "p!p0@ $/@9PDO@\g@ p0 0P$P/9DO\`hpLK0KJIPIHHpGFp&p* $*0``0@ "-5@K V`a@@0@pp&6A`MWc`0 0 0P#P.5@PLVa `p p#.`6`AL0Wpbp0@ $/`8pCN[f@ p0 0P$P/8C0O[ gp`00PP(2=H S@^ip`00PP&`;FQp`0 P$:EPYe@ZY0YX XWWVUTpp`p@`%`:pEPPFpEDDPCBA@Ap@? ##$00 P Pp p+mt00 0` % :0EPPPYdn ``P`'2< HR]Pi| p $/P3 >`IPpP?>@>PP@ !,3>JPU`@l:``0@ !,5@@KS^j :`p "-P5@@KT0_j97B@NXPd0n7BMXcm@7@BM0Xpc@mP@0 0P"P-4?JpT_ k 9  "-4?KT`k8JVbm=@=<0<; ; @ @`!`,@4 ?`JU`l 8`P10;FQ@Ze0o 78 CN6`65@00    w s s s s sPs `s  sumath.so.debugr..shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.ctors.dtors.jcr.data.rel.ro.dynamic.got.got.plt.data.bss.gnu_debuglink $o( !0((8o66Eo99`T998O^ hcءءn``xOtz#%%>>qȰ$Ȱذ$ذ$$8 8$8$0$P$1 `$P Pd