Ñò \ÐKc@sNdZddkTddkZdefd„ƒYZedjo eƒndS(sp >>> import numpy.core as nx >>> from numpy.lib.polynomial import poly1d, polydiv >>> p = poly1d([1.,2,3]) >>> p poly1d([ 1., 2., 3.]) >>> print p 2 1 x + 2 x + 3 >>> q = poly1d([3.,2,1]) >>> q poly1d([ 3., 2., 1.]) >>> print q 2 3 x + 2 x + 1 >>> print poly1d([1.89999+2j, -3j, -5.12345678, 2+1j]) 3 2 (1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j) >>> print poly1d([100e-90, 1.234567e-9j+3, -1234.999e8]) 2 1e-88 x + (3 + 1.235e-09j) x - 1.235e+11 >>> print poly1d([-3, -2, -1]) 2 -3 x - 2 x - 1 >>> p(0) 3.0 >>> p(5) 38.0 >>> q(0) 1.0 >>> q(5) 86.0 >>> p * q poly1d([ 3., 8., 14., 8., 3.]) >>> p / q (poly1d([ 0.33333333]), poly1d([ 1.33333333, 2.66666667])) >>> p + q poly1d([ 4., 4., 4.]) >>> p - q poly1d([-2., 0., 2.]) >>> p ** 4 poly1d([ 1., 8., 36., 104., 214., 312., 324., 216., 81.]) >>> p(q) poly1d([ 9., 12., 16., 8., 6.]) >>> q(p) poly1d([ 3., 12., 32., 40., 34.]) >>> nx.asarray(p) array([ 1., 2., 3.]) >>> len(p) 2 >>> p[0], p[1], p[2], p[3] (3.0, 2.0, 1.0, 0) >>> p.integ() poly1d([ 0.33333333, 1. , 3. , 0. ]) >>> p.integ(1) poly1d([ 0.33333333, 1. , 3. , 0. ]) >>> p.integ(5) poly1d([ 0.00039683, 0.00277778, 0.025 , 0. , 0. , 0. , 0. , 0. ]) >>> p.deriv() poly1d([ 2., 2.]) >>> p.deriv(2) poly1d([ 2.]) >>> q = poly1d([1.,2,3], variable='y') >>> print q 2 1 y + 2 y + 3 >>> q = poly1d([1.,2,3], variable='lambda') >>> print q 2 1 lambda + 2 lambda + 3 >>> polydiv(poly1d([1,0,-1]), poly1d([1,1])) (poly1d([ 1., -1.]), poly1d([ 0.])) iÿÿÿÿ(t*NtTestDocscBsGeZd„Zd„Zd„Zd„Zd„Zd„Zd„ZRS(cCstƒS(N(trundocs(tself((sE/usr/lib64/python2.6/site-packages/numpy/lib/tests/test_polynomial.pyt test_doctestsYscCs)ttidddgƒddgƒdS(Nii(tassert_array_equaltnptroots(R((sE/usr/lib64/python2.6/site-packages/numpy/lib/tests/test_polynomial.pyt test_roots\scCsxtiddddgƒ}d|dSs   :