Ñò
\ÐKc @ sN d Z d d k Td d k Z d e f d „ ƒ YZ e d j o e ƒ n d S( sp
>>> import numpy.core as nx
>>> from numpy.lib.polynomial import poly1d, polydiv
>>> p = poly1d([1.,2,3])
>>> p
poly1d([ 1., 2., 3.])
>>> print p
2
1 x + 2 x + 3
>>> q = poly1d([3.,2,1])
>>> q
poly1d([ 3., 2., 1.])
>>> print q
2
3 x + 2 x + 1
>>> print poly1d([1.89999+2j, -3j, -5.12345678, 2+1j])
3 2
(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)
>>> print poly1d([100e-90, 1.234567e-9j+3, -1234.999e8])
2
1e-88 x + (3 + 1.235e-09j) x - 1.235e+11
>>> print poly1d([-3, -2, -1])
2
-3 x - 2 x - 1
>>> p(0)
3.0
>>> p(5)
38.0
>>> q(0)
1.0
>>> q(5)
86.0
>>> p * q
poly1d([ 3., 8., 14., 8., 3.])
>>> p / q
(poly1d([ 0.33333333]), poly1d([ 1.33333333, 2.66666667]))
>>> p + q
poly1d([ 4., 4., 4.])
>>> p - q
poly1d([-2., 0., 2.])
>>> p ** 4
poly1d([ 1., 8., 36., 104., 214., 312., 324., 216., 81.])
>>> p(q)
poly1d([ 9., 12., 16., 8., 6.])
>>> q(p)
poly1d([ 3., 12., 32., 40., 34.])
>>> nx.asarray(p)
array([ 1., 2., 3.])
>>> len(p)
2
>>> p[0], p[1], p[2], p[3]
(3.0, 2.0, 1.0, 0)
>>> p.integ()
poly1d([ 0.33333333, 1. , 3. , 0. ])
>>> p.integ(1)
poly1d([ 0.33333333, 1. , 3. , 0. ])
>>> p.integ(5)
poly1d([ 0.00039683, 0.00277778, 0.025 , 0. , 0. ,
0. , 0. , 0. ])
>>> p.deriv()
poly1d([ 2., 2.])
>>> p.deriv(2)
poly1d([ 2.])
>>> q = poly1d([1.,2,3], variable='y')
>>> print q
2
1 y + 2 y + 3
>>> q = poly1d([1.,2,3], variable='lambda')
>>> print q
2
1 lambda + 2 lambda + 3
>>> polydiv(poly1d([1,0,-1]), poly1d([1,1]))
(poly1d([ 1., -1.]), poly1d([ 0.]))
iÿÿÿÿ( t *Nt TestDocsc B sG e Z d „ Z d „ Z d „ Z d „ Z d „ Z d „ Z d „ Z RS( c C s t ƒ S( N( t rundocs( t self( ( sE /usr/lib64/python2.6/site-packages/numpy/lib/tests/test_polynomial.pyt
test_doctestsY s c C s) t t i d d d g ƒ d d g ƒ d S( Ni i ( t assert_array_equalt npt roots( R ( ( sE /usr/lib64/python2.6/site-packages/numpy/lib/tests/test_polynomial.pyt
test_roots\ s c C sx t i d d d d g ƒ } d | d