
btrecord and btreplay User Guide

Alan D. Brunelle (Alan.Brunelle@hp.com)

May 10, 2016

Abstract

The btrecord and btreplay tools provide the ability to record and
replay IOs captured by the blktrace utility. Attempts are made to main-
tain ordering, CPU mappings and time-separation of IOs. The general
workflow is expected to be:

1. Initiate blktrace to capture traces

2. Generate traces. . .

3. Stop blktrace

4. Run btrecord to convert traces into IO records

5. Utilize btreplay to replay IOs

This document will discuss the operating characteristics of btreplay

and provide detailed command line option descriptions.

Contents

1 Introduction 3

2 btrecord and btreplay Operating Model 4
2.1 Basic Workflow . 4
2.2 IO Stream Replay Characteristics 4
2.3 btrecord/btreplay Method of Operation 5
2.4 Known Deficiencies and Proposed Possible Fixes 7

3 Command Line Options 8
3.1 btrecord Command Line Options 8

3.1.1 -d or --input-directory
Set Input Directory . 8

3.1.2 -D or --output-directory
Set Output Directory . 8

3.1.3 -F or --find-traces
Find Trace Files Automatically 8

3.1.4 -h or --help
Display Help Message . 9

3.1.5 -V or --version
Display btrecordVersion 9

3.1.6 -m or --max-bunch-time
Set Maximum Time Per Bunch 9

3.1.7 -M or --max-pkts
Set Maximum Packets Per Bunch 9

3.1.8 -o or --output-base
Set Base Name for Output Files 9

3.1.9 -v or --verbose
Select Verbose Output . 10

3.2 btreplay Command Line Options 11
3.2.1 -c or --cpus

Set Number of CPUs to Use 11
3.2.2 -d or --input-directory

Set Input Directory . 11
3.2.3 -F or --find-records

Find RecordFiles Automatically 11
3.2.4 -h or --help

Display Help Message . 11
3.2.5 -V or --version

Display btreplayVersion 11
3.2.6 -i or --input-base

Set Base Name for Input Files 12
3.2.7 -I or --iterations

Set Number of Iterations to Run 12

2

3.2.8 -M or map-devs
Specify Device Mappings 12

3.2.9 -N or --no-stalls
Disable Pre-bunch Stalls 13

3.2.10 -x or --acc-factor
Acceleration Factor . 13

3.2.11 -v or --verbose
Select Verbose Output . 13

3.2.12 -W or --write-enable
Enable Writing During Replay 13

1 Introduction

The btrecord and btreplay tools provide the ability to record and replay IOs
captured by the blktrace utility. Attempts are made to maintain ordering,
CPU mappings and time-separation of IOs. The general workflow is expected
to be:

1. Initiate blktrace to capture traces

2. Generate traces. . .

3. Stop blktrace

4. Run btrecord to convert traces into IO records

5. Utilize btreplay to replay IOs

This document will discuss the operating characteristics of btreplay and
provide detailed command line option descriptions.

This document presents the command line overview for btrecord and btreplay,
and shows some commonly used example usages of it in everyday work here at
OSLO’s Scalability and Performance Group.

Build Note

To build these tools, one needs to place the source directory next to a valid
blktrace1 directory, as it includes ../blktrace in the Makefile.

1git://git.kernel.dk/blktrace.git

4

2 btrecord and btreplay Operating Model

The blktrace utility provides the ability to collect detailed traces from the
kernel for each IO processed by the block IO layer. The traces provide a com-
plete timeline for each IO processed, including detailed information concerning
when an IO was first received by the block IO layer – indicating the device,
CPU number, time stamp, IO direction, sector number and IO size (number of
sectors). Using this information, one is able to replay the IO again on the same
machine or another set up entirely.

2.1 Basic Workflow

The basic operating work-flow to replay IOs would be something like:

1. Run blktrace to collect traces. Here you specify the device or devices
that you wish to trace and later replay IOs upon. Note: the only traces
you are interested in are QUEUE requests – thus, to save system resources
(including storage for traces), one could specify the -a queue command
line option to blktrace.

2. While blktrace is running, you run the workload that you are interested
in.

3. When the work load has completed, you stop the blktrace utility (thus
saving all traces over the complete workload).

4. You extract the pertinent IO information from the traces saved by blktrace
using the btrecord utility. This will parse each trace file created by
blktrace, and craft IO descriptions to be used in the next phase of the
workload processing.

5. Once btrecord has successfully created a series of data files to be pro-
cessed, you can run the btreplay utility which attempts to generate the
same IOs seen during the sample workload phase.

2.2 IO Stream Replay Characteristics

The major characteristics of the IO stream that are kept intact include:

Device The IOs are replayed on the same device as was seen during the sample
workload.

IO direction The same IO direction (read/write) is maintained.

IO offset The same device offset is maintained.

IO size The same number of sectors are transferred.

5

Time differential The time stamps stored during the blktrace run are used
to determine the amount of time between IOs during the sample workload.
btreplay attempts to maintain the same time differential between IOs,
but no guarantees as to complete accuracy are provided by the utility.

Device IO Stream Ordering All IOs on a device are submitted in the precise
order they were seen during the sample workload run.

As noted above, the time between IOs may not be accurately maintained
during replays. In addition the actual ordering of IOs between devices is not
necessarily maintained. (Each device with an IO stream maintains its own
concept of time, and thus there may be slippage of the time kept between
managing threads.)

We have prototyped a different approach, wherein a single man-
aging thread handles all IOs across all devices. This approach, while
guaranteeing correct ordering of IOs across all devices, resulted in
much worse timing on a per IO basis.

2.3 btrecord/btreplay Method of Operation

As noted above, btrecord extracts QUEUE operations from blktrace output.
These QUEUE operations indicate the entrance of IOs into the block IO layer.
In order to replay these IOs with some accuracy in regards to ordering and
timeliness, we decided to take multiple sequential (in time) IOs and put them
in a single bunch of IOs that will be processed as a single asynchronous IO call
to the kernel2. To manage the size of the bunches, the btrecord utility provides
you with two controlling knobs:

--max-bunch-time This is the amount of time to encompass in one bunch –
only IOs within the time specified are eligible for bunching. The default
time is 10 milliseconds (10,000,000 nanoseconds). Refer to section 3.1.6
on page 9 for more information.

--max-pkts A bunch size can be anywhere from 1 to 512 packets in size and by
default we max a bunch to contain no more than 8 individual IOs. With
this option, one can increase or decrease the maximum bunch size. Refer
to section 3.1.7 on page 9 for more information.

Each input data file (one per device per CPU) results in a new record data
file (again, one per device per CPU) which contains information about bunches
of IOs to be replayed. btreplay operates on these record data files by spawning
a new pair of threads per file. One thread manages the submitting of AIOs per

2Attempts to do them individually resulted in too large of a turnaround time penalty
(user-space to kernel and back). Note that in a number of workloads, the IOs are coming in
from the page cache handling code, and thus are submitted to the block IO layer with very
small time intervals between issues.

6

bunch in the record data file, while the other thread manages reclaiming AIOs
completed3.

Each submitting thread simply reads the input file of bunches recorded by
btrecord, and attempts to faithfully reproduce the ordering and timing of IOs
seen during the sample workload. The reclaiming thread simply waits for AIO
completions, freeing up resources for the submitting thread to utilize to submit
new AIOs.

The number of CPUs being used on the replay system can be different from
the number on the recorded system. To help with mappings here the --cpus
option allows one to state how many CPUs on the replay system to utilize. If the
number of CPUs on the replay system is less than on the recording system, we
wrap CPU IDs. This may result in an overload of CPU processing capabilities
on the replay system. (Refer to section 3.2.1 on page 11 for more details about
the --cpus option.)

3We have found that having the same thread do both results in a further reduction in
replay timing accuracy.

7

2.4 Known Deficiencies and Proposed Possible Fixes

The overall known deficiencies with this current set of utilities is outlined here,
in some cases ideas on additions and/or improvements are included as well.

1. Lack of IO ordering across devices.

We could institute the notion of global time across threads, and
thus ensure IO ordering across devices, with some reduction in
timing accuracy.

2. Lack of IO timing accuracy – additional time between IO bunches.

This is the primary problem with any IO replay mechanism –
how to guarantee per-IO timing accuracy with respect to other
replayed IOs? One idea to reduce errors in this area would be to
push the IO replay into the kernel, where you may receive more
responsive timings.

3. Bunching of IOs results in reduced time amongst IOs within a bunch.

The user has some control over this (via the --max-pkts op-
tion). One could simply specify -max-pkts=1 and then each
IO would be treated individually. Of course, this would probably
then run into the problem of excessive inter-IO times.

4. 1-to-1 mapping of devices – for now the devices on the replay machine
must be the same as on the recording machine.

It should be relatively trivial to add in the notion of mapping –
simply include a file that is read which maps devices on one ma-
chine to devices (with offsets and sizes) on the replay machine4.

One could also add in the notion of CPU mappings as well –
device Drec managed by CPU Crec on the recorded system shall
be replayed on device Drep and CPU Crep on the replay machine.

With version 0.9.1 we now support the -M option to do
this – see section 3.2.8 on page 12 for more information
on device mapping.

4The notion of an offset and device size to replay on could be used to both allow for a
single device to masquerade as more than one device, and could be utilized in case the replay
device is smaller than the recorded device.

8

3 Command Line Options

3.1 btrecord Command Line Options

Usage: btrecord -- version 0.9.3

[-d <dir> : --input-directory=<dir>] Default: .
[-D <dir> : --output-directory=<dir>] Default: .
[-F : --find-traces] Default: Off
[-h : --help] Default: Off
[-m <nsec> : --max-bunch-time=<nsec>] Default: 10 msec
[-M <pkts> : --max-pkts=<pkts>] Default: 8
[-o <base> : --output-base=<base>] Default: replay
[-v : --verbose] Default: Off
[-V : --version] Default: Off
<dev>... Default: None

Figure 1: btrecord --help Output

3.1.1 -d or --input-directory
Set Input Directory

The -d option requires a single parameter providing the directory name for
where input files are to be found. The default directory is the current directory
(.).

3.1.2 -D or --output-directory
Set Output Directory

The -D option requires a single parameter providing the directory name for
where output files are to be placed. The default directory is the current directory
(.).

3.1.3 -F or --find-traces
Find Trace Files Automatically

The -F option instructs btrecord to go find all the trace files in the directory
specified (either via the -d option, or in the default directory ’.’).

9

3.1.4 -h or --help
Display Help Message

3.1.5 -V or --version
Display btrecordVersion

The -h option displays the command line options and defaults, as presented in
figure 1 on page 8.

The -V option displays the btreplay version, as shown here:

$ btrecord --version
btrecord -- version 0.9.0

Both commands exit immediately after processing the option.

3.1.6 -m or --max-bunch-time
Set Maximum Time Per Bunch

The -m option requires a single parameter which specifies an amount of time
(in nanoseconds) to include in any one bunch of IOs that are to be processed.
The smaller the value, the smaller the number of IOs processed at one time
– perhaps yielding in more realistic replay. However, after a certain point the
amount of overhead per bunch may result in additional real replay time, thus
yielding less accurate replay times.

The default value is 10,000,000 nanoseconds (10 milliseconds).

3.1.7 -M or --max-pkts
Set Maximum Packets Per Bunch

The -M option requires a single parameter which specifies the maximum number
of IOs to store in a single bunch. As with the -m option (section 3.1.6), smaller
values may or may not yield more accurate replay times.

The default value is 8, with a maximum value of up to 512 being supported.

3.1.8 -o or --output-base
Set Base Name for Output Files

Each output file has 3 fields:

1. Device identifier (taken directly from the device name of the blktrace
output file).

2. btrecord base name – by default “replay”.

3. And the CPU number (again, taken directly from the blktrace output
file name).

This option requires a single parameter that will override the default name
(replay), and replace it with the specified value.

10

3.1.9 -v or --verbose
Select Verbose Output

This option will output some simple statistics at the end of a successful run.
Figure 2 (page 10) shows an example of some output, while figure 3 (page 10)
shows what the fields mean.

sdab:0: 580661 pkts (tot), 126030 pkts (replay), 89809 bunches, 1.4 pkts/bunch
sdab:1: 2559775 pkts (tot), 430172 pkts (replay), 293029 bunches, 1.5 pkts/bunch
sdab:2: 653559 pkts (tot), 136522 pkts (replay), 102288 bunches, 1.3 pkts/bunch
sdab:3: 474773 pkts (tot), 117849 pkts (replay), 69572 bunches, 1.7 pkts/bunch

Figure 2: Verbose Output Example

Field 1 The first field contains the device name and CPU identifier. Thus:
sdab:0: means the device sdab and traces on CPU 0.

Field 2 The second field contains the total number of packets processed for
each device file.

Field 3 The next field shows the number of packets eligible for replay.

Field 4 The fourth field contains the total number of IO bunches.

Field 5 The last field shows the average number of IOs per bunch recorded.

Figure 3: Verbose Field Definitions

11

3.2 btreplay Command Line Options

Usage: btreplay -- version 0.9.3

[-c <cpus> : --cpus=<cpus>] Default: 1
[-d <dir> : --input-directory=<dir>] Default: .
[-F : --find-records] Default: Off
[-h : --help] Default: Off
[-i <base> : --input-base=<base>] Default: replay
[-I <iters>: --iterations=<iters>] Default: 1
[-M <file> : --map-devs=<file>] Default: None
[-N : --no-stalls] Default: Off
[-x <int> : --acc-factor=<int>] Default: 1
[-v : --verbose] Default: Off
[-V : --version] Default: Off
[-W : --write-enable] Default: Off
<dev...> Default: None

Figure 4: btreplay --help Output

3.2.1 -c or --cpus
Set Number of CPUs to Use

3.2.2 -d or --input-directory
Set Input Directory

The -d option requires a single parameter providing the directory name for
where input files are to be found. The default directory is the current directory
(.).

3.2.3 -F or --find-records
Find RecordFiles Automatically

The -F option instructs btreplay to go find all the record files in the directory
specified (either via the -d option, or in the default directory ’.’).

3.2.4 -h or --help
Display Help Message

3.2.5 -V or --version
Display btreplayVersion

The -h option displays the command line options and defaults, as presented in
figure 4 on page 11.

The -V option displays the btreplay version, as show here:

12

$ btreplay --version
btreplay -- version 0.9.0

Both commands exit immediately after processing the option.

3.2.6 -i or --input-base
Set Base Name for Input Files

Each input file has 3 fields:

1. Device identifier (taken directly from the device name of the blktrace
output file).

2. btrecord base name – by default “replay”.

3. And the CPU number (again, taken directly from the blktrace output
file name).

This option requires a single parameter that will override the default name
(replay), and replace it with the specified value.

3.2.7 -I or --iterations
Set Number of Iterations to Run

This option requires a single parameter which specifies the number of times to
run through the input files. The default value is 1.

3.2.8 -M or map-devs
Specify Device Mappings

This option requires a single parameter which specifies the name of a file con-
taining device mappings. The file must be very simply managed, with just two
pieces of data per line:

1. The device name on the recorded system (with the ’/dev/’ removed).
Example: /dev/sda would just be sda.

2. The device name on the replay system to use (again, without the ’/dev/’
path prepended).

An example file for when one would map devices /dev/sda and /dev/sdb
on the recorded system to dev/sdg and sdh on the replay system would be:

sda sdg
sdb sdh

The only entries in the file that are allowed are these two element lines – we
do not (yet?) support the notion of blank lines, or comment lines, or the like.

The utility does allow for multiple -M options to be supplied on the command
line.

13

3.2.9 -N or --no-stalls
Disable Pre-bunch Stalls

When specified on the command line, all pre-bunch stall indicators will be ig-
nored. IOs will be replayed without inter-bunch delays.

3.2.10 -x or --acc-factor
Acceleration Factor

While the --no-stalls option allows the traces to be replayed with no waiting
time, this option specifies some acceleration factor to be used. If the value of
two is used, then the stall time is divided by half resulting in a reduction of the
execution time by this factor. Note that if this number is too high, the results
will be equivalent of not having stall.

3.2.11 -v or --verbose
Select Verbose Output

When specified on the command line, this option instructs btreplay to store
information concerning each stall and IO operation performed by btreplay.
The name of each file so created will be the input file name used with an exten-
sion of .rep appended onto it. Thus, an input file of the name sdab.replay.3
would generate a verbose output file with the name sdab.replay.3.rep in the
directory specified for input files.

In addition, btreplay will also output to stderr the names of the input
files being processed.

3.2.12 -W or --write-enable
Enable Writing During Replay

As a precautionary measure, by default btreplay will not process write re-
quests. In order to enable btreplay to actually write to devices one must
explicitly specify the -W option.

14

