Network Working Group J. Strassner
Request for Comments: 3703 Intelliden Corporation
Category: Standards Track B. Moore
IBM Corporation
R. Moats
Lemur Networks, Inc.
E. Ellesson
February 2004
Policy Core Lightweight Directory Access Protocol (LDAP) Schema
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
This document defines a mapping of the Policy Core Information Model
to a form that can be implemented in a directory that uses
Lightweight Directory Access Protocol (LDAP) as its access protocol.
This model defines two hierarchies of object classes: structural
classes representing information for representing and controlling
policy data as specified in RFC 3060, and relationship classes that
indicate how instances of the structural classes are related to each
other. Classes are also added to the LDAP schema to improve the
performance of a client's interactions with an LDAP server when the
client is retrieving large amounts of policy-related information.
These classes exist only to optimize LDAP retrievals: there are no
classes in the information model that correspond to them.
Table of Contents
1. Introduction ................................................. 2
2. The Policy Core Information Model ............................ 4
3. Inheritance Hierarchy for the PCLS ........................... 5
4. General Discussion of Mapping the Information Model to LDAP .. 6
4.1. Summary of Class and Association Mappings .............. 7
4.2. Usage of DIT Content and Structure Rules and Name Forms. 9
4.3. Naming Attributes in the PCLS .......................... 10
Strassner, et al. Standards Track [Page 1]
RFC 3703 Policy Core LDAP Schema February 2004
4.4. Rule-Specific and Reusable Conditions and Actions ...... 11
4.5. Location and Retrieval of Policy Objects in the
Directory .............................................. 16
4.5.1. Aliases and Other DIT-Optimization Techniques .. 19
5. Class Definitions ............................................ 19
5.1. The Abstract Class "pcimPolicy" ........................ 21
5.2. The Three Policy Group Classes ......................... 22
5.3. The Three Policy Rule Classes .......................... 23
5.4. The Class pcimRuleConditionAssociation ................. 30
5.5. The Class pcimRuleValidityAssociation .................. 32
5.6. The Class pcimRuleActionAssociation .................... 34
5.7. The Auxiliary Class pcimConditionAuxClass .............. 36
5.8. The Auxiliary Class pcimTPCAuxClass .................... 36
5.9. The Auxiliary Class pcimConditionVendorAuxClass ........ 40
5.10. The Auxiliary Class pcimActionAuxClass ................. 41
5.11. The Auxiliary Class pcimActionVendorAuxClass ........... 42
5.12. The Class pcimPolicyInstance ........................... 43
5.13. The Auxiliary Class pcimElementAuxClass ................ 44
5.14. The Three Policy Repository Classes .................... 45
5.15. The Auxiliary Class pcimSubtreesPtrAuxClass ............ 46
5.16. The Auxiliary Class pcimGroupContainmentAuxClass ....... 48
5.17. The Auxiliary Class pcimRuleContainmentAuxClass ........ 49
6. Extending the Classes Defined in This Document ............... 50
6.1. Subclassing pcimConditionAuxClass and pcimActionAuxClass 50
6.2. Using the Vendor Policy Attributes ..................... 50
6.3. Using Time Validity Periods ............................ 51
7. Security Considerations ...................................... 51
8. IANA Considerations .......................................... 53
8.1. Object Identifiers ..................................... 53
8.2. Object Identifier Descriptors .......................... 53
9. Acknowledgments .............................................. 56
10. Appendix: Constructing the Value of orderedCIMKeys .......... 57
11. References ................................................... 58
11.1. Normative References ................................... 58
11.2. Informative References ................................. 59
12. Authors' Addresses ........................................... 60
13. Full Copyright Statement ..................................... 61
1. Introduction
This document takes as its starting point the object-oriented
information model for representing information for representing and
controlling policy data as specified in [1]. Lightweight Directory
Access Protocol (LDAP) [2] implementers, please note that the use of
the term "policy" in this document does not refer to the use of the
term "policy" as defined in X.501 [4]. Rather, the use of the term
"policy" throughout this document is defined as follows:
Strassner, et al. Standards Track [Page 2]
RFC 3703 Policy Core LDAP Schema February 2004
Policy is defined as a set of rules to administer, manage, and
control access to network resources.
This work is currently under joint development in the IETF's Policy
Framework working group and in the Policy working group of the
Distributed Management Task Force (DMTF). This model defines two
hierarchies of object classes: structural classes representing policy
information and control of policies, and relationship classes that
indicate how instances of the structural classes are related to each
other. In general, both of these class hierarchies will need to be
mapped to a particular data store.
This document defines the mapping of these information model classes
to a directory that uses LDAP as its access protocol. Two types of
mappings are involved:
- For the structural classes in the information model, the
mapping is basically one-for-one: information model classes map
to LDAP classes, information model properties map to LDAP
attributes.
- For the relationship classes in the information model,
different mappings are possible. In this document, the Policy
Core Information Model's (PCIM's) relationship classes and
their properties are mapped in three ways: to LDAP auxiliary
classes, to attributes representing distinguished name (DN)
references, and to superior-subordinate relationships in the
Directory Information Tree (DIT).
Implementations that use an LDAP directory as their policy repository
and want to implement policy information according to RFC 3060 [1]
SHALL use the LDAP schema defined in this document, or a schema that
subclasses from the schema defined in this document. The use of the
information model defined in reference [1] as the starting point
enables the inheritance and the relationship class hierarchies to be
extensible, such that other types of policy repositories, such as
relational databases, can also use this information.
This document fits into the overall framework for representing,
deploying, and managing policies being developed by the Policy
Framework Working Group.
The LDAP schema described in this document uses the prefix "pcim" to
identify its classes and attributes. It consists of ten very general
classes: pcimPolicy (an abstract class), three policy group classes
(pcimGroup, pcimGroupAuxClass, and pcimGroupInstance), three policy
rule classes (pcimRule, pcimRuleAuxClass, and pcimRuleInstance), and
three special auxiliary classes (pcimConditionAuxClass,
Strassner, et al. Standards Track [Page 3]
RFC 3703 Policy Core LDAP Schema February 2004
pcimTPCAuxClass, and pcimActionAuxClass). (Note that the
PolicyTimePeriodCondition auxiliary class defined in [1] would
normally have been named pcimTimePeriodConditionAuxClass, but this
name is too long for some directories. Therefore, we have
abbreviated this name to be pcimTPCAuxClass).
The mapping for the PCIM classes pcimGroup and pcimRule is designed
to be as flexible as possible. Three classes are defined for these
two PCIM classes. First, an abstract superclass is defined that
contains all required properties of each PCIM class. Then, both an
auxiliary class as well as a structural class are derived from the
abstract superclass. This provides maximum flexibility for the
developer.
The schema also contains two less general classes:
pcimConditionVendorAuxClass and pcimActionVendorAuxClass. To achieve
the mapping of the information model's relationships, the schema also
contains two auxiliary classes: pcimGroupContainmentAuxClass and
pcimRuleContainmentAuxClass. Capturing the distinction between
rule-specific and reusable policy conditions and policy actions
introduces seven other classes: pcimRuleConditionAssociation,
pcimRuleValidityAssociation, pcimRuleActionAssociation,
pcimPolicyInstance, and three policy repository classes
(pcimRepository, pcimRepositoryAuxClass, and pcimRepositoryInstance).
Finally, the schema includes two classes (pcimSubtreesPtrAuxClass and
pcimElementAuxClass) for optimizing LDAP retrievals. In all, the
schema contains 23 classes.
Within the context of this document, the term "PCLS" (Policy Core
LDAP Schema) is used to refer to the LDAP class definitions that this
document contains. The term "PCIM" refers to classes defined in [1].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [10].
2. The Policy Core Information Model
This document contains an LDAP schema representing the classes
defined in the companion document "Policy Core Information
Model -- Version 1 Specification" [1]. Other documents may
subsequently be produced, with mappings of this same PCIM to other
storage technologies. Since the detailed semantics of the PCIM
classes appear only in [1], that document is a prerequisite for
reading and understanding this document.
Strassner, et al. Standards Track [Page 4]
RFC 3703 Policy Core LDAP Schema February 2004
3. Inheritance Hierarchy for the PCLS
The following diagram illustrates the class hierarchy for the LDAP
Classes defined in this document:
top
|
+--dlm1ManagedElement (abstract)
| |
| +--pcimPolicy (abstract)
| | |
| | +--pcimGroup (abstract)
| | | |
| | | +--pcimGroupAuxClass (auxiliary)
| | | |
| | | +--pcimGroupInstance (structural)
| | |
| | +--pcimRule (abstract)
| | | |
| | | +--pcimRuleAuxClass (auxiliary)
| | | |
| | | +--pcimRuleInstance (structural)
| | |
| | +--pcimRuleConditionAssociation (structural)
| | |
| | +--pcimRuleValidityAssociation (structural)
| | |
| | +--pcimRuleActionAssociation (structural)
| | |
| | +--pcimPolicyInstance (structural)
| | |
| | +--pcimElementAuxClass (auxiliary)
| |
| +--dlm1ManagedSystemElement (abstract)
| |
| +--dlm1LogicalElement (abstract)
| |
| +--dlm1System (abstract)
| |
| +--dlm1AdminDomain (abstract)
| |
| +--pcimRepository (abstract)
| |
| +--pcimRepositoryAuxClass (auxiliary)
Strassner, et al. Standards Track [Page 5]
RFC 3703 Policy Core LDAP Schema February 2004
top
| |
| +--pcimRepositoryInstance
| (structural)
|
+--pcimConditionAuxClass (auxiliary)
| |
| +---pcimTPCAuxClass (auxiliary)
| |
| +---pcimConditionVendorAuxClass (auxiliary)
|
+--pcimActionAuxClass (auxiliary)
| |
| +---pcimActionVendorAuxClass (auxiliary)
|
+--pcimSubtreesPtrAuxClass (auxiliary)
|
+--pcimGroupContainmentAuxClass (auxiliary)
|
+--pcimRuleContainmentAuxClass (auxiliary)
Figure 1. LDAP Class Inheritance Hierarchy for the PCLS
4. General Discussion of Mapping the Information Model to LDAP
The classes described in Section 5 below contain certain
optimizations for a directory that uses LDAP as its access protocol.
One example of this is the use of auxiliary classes to represent some
of the associations defined in the information model. Other data
stores might need to implement these associations differently. A
second example is the introduction of classes specifically designed
to optimize retrieval of large amounts of policy-related data from a
directory. This section discusses some general topics related to the
mapping from the information model to LDAP.
The remainder of this section will discuss the following topics.
Section 4.1 will discuss the strategy used in mapping the classes and
associations defined in [1] to a form that can be represented in a
directory that uses LDAP as its access protocol. Section 4.2
discusses DIT content and structure rules, as well as name forms.
Section 4.3 describes the strategy used in defining naming attributes
for the schema described in Section 5 of this document. Section 4.4
defines the strategy recommended for locating and retrieving
PCIM-derived objects in the directory.
Strassner, et al. Standards Track [Page 6]
RFC 3703 Policy Core LDAP Schema February 2004
4.1. Summary of Class and Association Mappings
Fifteen of the classes in the PCLS come directly from the nine
corresponding classes in the information model. Note that names of
classes begin with an upper case character in the information model
(although for CIM in particular, case is not significant in class and
property names), but with a lower case character in LDAP. This is
because although LDAP doesn't care, X.500 doesn't allow class names
to begin with an uppercase character. Note also that the prefix
"pcim" is used to identify these LDAP classes.
+---------------------------+-------------------------------+
| Information Model | LDAP Class(es) |
+---------------------------+-------------------------------+
+---------------------------+-------------------------------+
| Policy | pcimPolicy |
+---------------------------+-------------------------------+
| PolicyGroup | pcimGroup |
| | pcimGroupAuxClass |
| | pcimGroupInstance |
+---------------------------+-------------------------------+
| PolicyRule | pcimRule |
| | pcimRuleAuxClass |
| | pcimRuleInstance |
+---------------------------+-------------------------------+
| PolicyCondition | pcimConditionAuxClass |
+---------------------------+-------------------------------+
| PolicyAction | pcimActionAuxClass |
+---------------------------+-------------------------------+
| VendorPolicyCondition | pcimConditionVendorAuxClass |
+---------------------------+-------------------------------+
| VendorPolicyAction | pcimActionVendorAuxClass |
+---------------------------+-------------------------------+
| PolicyTimePeriodCondition | pcimTPCAuxClass |
+---------------------------+-------------------------------+
| PolicyRepository | pcimRepository |
| | pcimRepositoryAuxClass |
| | pcimRepositoryInstance |
+---------------------------+-------------------------------+
Figure 2. Mapping of Information Model Classes to LDAP
The associations in the information model map to attributes that
reference DNs (Distinguished Names) or to Directory Information Tree
(DIT) containment (i.e., superior-subordinate relationships) in LDAP.
Two of the attributes that reference DNs appear in auxiliary classes,
which allow each of them to represent several relationships from the
information model.
Strassner, et al. Standards Track [Page 7]
RFC 3703 Policy Core LDAP Schema February 2004
+----------------------------------+----------------------------------+
| Information Model Association | LDAP Attribute / Class |
+-----------------------------------+---------------------------------+
+-----------------------------------+---------------------------------+
| PolicyGroupInPolicyGroup | pcimGroupsAuxContainedSet in |
| | pcimGroupContainmentAuxClass |
+-----------------------------------+---------------------------------+
| PolicyRuleInPolicyGroup | pcimRulesAuxContainedSet in |
| | pcimRuleContainmentAuxClass |
+-----------------------------------+---------------------------------+
| PolicyConditionInPolicyRule | DIT containment or |
| | pcimRuleConditionList in |
| | pcimRule or |
| | pcimConditionDN in |
| | pcimRuleConditionAssociation |
+-----------------------------------+---------------------------------+
| PolicyActionInPolicyRule | DIT containment or |
| | pcimRuleActionList in |
| | pcimRule or |
| | pcimActionDN in |
| | pcimRuleActionAssociation |
+-----------------------------------+---------------------------------+
| PolicyRuleValidityPeriod | pcimRuleValidityPeriodList |
| | in pcimRule or (if reusable) |
| | referenced through the |
| | pcimTimePeriodConditionDN in |
| | pcimRuleValidityAssociation |
+-----------------------------------+---------------------------------+
| PolicyConditionInPolicyRepository | DIT containment |
+-----------------------------------+---------------------------------+
| PolicyActionInPolicyRepository | DIT containment |
+-----------------------------------+---------------------------------+
| PolicyRepositoryInPolicyRepository| DIT containment |
+-----------------------------------+---------------------------------+
Figure 3. Mapping of Information Model Associations to LDAP
Of the remaining classes in the PCLS, two (pcimElementAuxClass and
pcimSubtreesPtrAuxClass) are included to make navigation through the
DIT and retrieval of the entries found there more efficient. This
topic is discussed below in Section 4.5.
The remaining four classes in the PCLS, pcimRuleConditionAssociation,
pcimRuleValidityAssociation, pcimRuleActionAssociation, and
pcimPolicyInstance, are all involved with the representation of
policy conditions and policy actions in an LDAP directory. This
topic is discussed below in Section 4.4.
Strassner, et al. Standards Track [Page 8]
RFC 3703 Policy Core LDAP Schema February 2004
4.2. Usage of DIT Content and Structure Rules and Name Forms
There are three powerful tools that can be used to help define
schemata. The first, DIT content rules, is a way of defining the
content of an entry for a structural object class. It can be used to
specify the following characteristics of the entry:
- additional mandatory attributes that the entries are required
to contain
- additional optional attributes the entries are allowed to
contain
- the set of additional auxiliary object classes that these
entries are allowed to be members of
- any optional attributes from the structural and auxiliary
object class definitions that the entries are required to
preclude
DIT content rules are NOT mandatory for any structural object class.
A DIT structure rule, together with a name form, controls the
placement and naming of an entry within the scope of a subschema.
Name forms define which attribute type(s) are required and are
allowed to be used in forming the Relative Distinguished Names (RDNs)
of entries. DIT structure rules specify which entries are allowed to
be superior to other entries, and hence control the way that RDNs are
added together to make DNs.
A name form specifies the following:
- the structural object class of the entries named by this name
form
- attributes that are required to be used in forming the RDNs of
these entries
- attributes that are allowed to be used in forming the RDNs of
these entries
- an object identifier to uniquely identify this name form
Note that name forms can only be specified for structural object
classes. However, every entry in the DIT must have a name form
controlling it.
Unfortunately, current LDAP servers vary quite a lot in their support
of these features. There are also three crucial implementation
points that must be followed. First, X.500 use of structure rules
requires that a structural object class with no superior structure
rule be a subschema administrative point. This is exactly NOT what
we want for policy information. Second, when an auxiliary class is
subclassed, if a content rule exists for the structural class that
Strassner, et al. Standards Track [Page 9]
RFC 3703 Policy Core LDAP Schema February 2004
the auxiliary class refers to, then that content rule needs to be
augmented. Finally, most LDAP servers unfortunately do not support
inheritance of structure and content rules.
Given these concerns, DIT structure and content rules have been
removed from the PCLS. This is because, if included, they would be
normative references and would require OIDs. However, we don't want
to lose the insight gained in building the structure and content
rules of the previous version of the schema. Therefore, we describe
where such rules could be used in this schema, what they would
control, and what their effect would be.
4.3. Naming Attributes in the PCLS
Instances in a directory are identified by distinguished names (DNs),
which provide the same type of hierarchical organization that a file
system provides in a computer system. A distinguished name is a
sequence of RDNs. An RDN provides a unique identifier for an
instance within the context of its immediate superior, in the same
way that a filename provides a unique identifier for a file within
the context of the folder in which it resides.
To preserve maximum naming flexibility for policy administrators,
three optional (i.e., "MAY") naming attributes have been defined.
They are:
- Each of the structural classes defined in this schema has its
own unique ("MAY") naming attribute. Since the naming
attributes are different, a policy administrator can, by using
these attributes, guarantee that there will be no name
collisions between instances of different classes, even if the
same value is assigned to the instances' respective naming
attributes.
- The LDAP attribute cn (corresponding to X.500's commonName) is
included as a MAY attribute in the abstract class pcimPolicy,
and thus by inheritance in all of its subclasses. In X.500,
commonName typically functions as an RDN attribute, for naming
instances of many classes (e.g., X.500's person class).
- A special attribute is provided for implementations that expect
to map between native CIM and LDAP representations of policy
information. This attribute, called orderedCimKeys, is defined
in the class dlm1ManagedElement [6]. The value of this
attribute is derived algorithmically from values that are
already present in a CIM policy instance. The normative
reference for this algorithm is contained in [6]. See the
appendix of this document for a description of the algorithm.
Strassner, et al. Standards Track [Page 10]
RFC 3703 Policy Core LDAP Schema February 2004
Since any of these naming attributes MAY be used for naming an
instance of a PCLS class, implementations MUST be able to accommodate
instances named in any of these ways.
Note that it is recommended that two or more of these attributes
SHOULD NOT be used together to form a multi-part RDN, since support
for multi-part RDNs is limited among existing directory
implementations.
4.4. Rule-Specific and Reusable Conditions and Actions
The PCIM [1] distinguishes between two types of policy conditions and
policy actions: those associated with a single policy rule, and
those that are reusable, in the sense that they may be associated
with more than one policy rule. While there is no inherent
functional difference between a rule-specific condition or action and
a reusable one, there is both a usage, as well as, an implementation
difference between them.
Defining a condition or action as reusable vs. rule-specific reflects
a conscious decision on the part of the administrator in defining how
they are used. In addition, there are variations that reflect
implementing rule-specific vs. reusable policy conditions and actions
and how they are treated in a policy repository. The major
implementation differences between a rule-specific and a reusable
condition or action are delineated below:
1. It is natural for a rule-specific condition or action to be
removed from the policy repository at the same time the rule is.
It is just the opposite for reusable conditions and actions.
This is because the condition or action is conceptually attached
to the rule in the rule-specific case, whereas it is referenced
(e.g., pointed at) in the reusable case. The persistence of a
pcimRepository instance is independent of the persistence of a
pcimRule instance.
2. Access permissions for a rule-specific condition or action are
usually identical to those for the rule itself. On the other
hand, access permissions of reusable conditions and actions must
be expressible without reference to a policy rule.
3. Rule-specific conditions and actions require fewer accesses,
because the conditions and actions are "attached" to the rule.
In contrast, reusable conditions and actions require more
accesses, because each condition or action that is reusable
requires a separate access.
4. Rule-specific conditions and actions are designed for use by a
single rule. As the number of rules that use the same
rule-specific condition increase, subtle problems are created
(the most obvious being how to keep the rule-specific conditions
Strassner, et al. Standards Track [Page 11]
RFC 3703 Policy Core LDAP Schema February 2004
and actions updated to reflect the same value). Reusable
conditions and actions lend themselves for use by multiple
independent rules.
5. Reusable conditions and actions offer an optimization when
multiple rules are using the same condition or action. This is
because the reusable condition or action only needs be updated
once, and by virtue of DN reference, the policy rules will be
automatically updated.
The preceding paragraph does not contain an exhaustive list of the
ways in which reusable and rule-specific conditions should be treated
differently. Its purpose is merely to justify making a semantic
distinction between rule-specific and reusable, and then reflecting
this distinction in the policy repository itself.
When the policy repository is realized in an LDAP-accessible
directory, the distinction between rule-specific and reusable
conditions and actions is realized via placement of auxiliary classes
and via DIT containment. Figure 4 illustrates a policy rule Rule1
with one rule-specific condition CA and one rule-specific action AB.
+-----+
|Rule1|
| |
+-----|- -|-----+
| +-----+ |
| * * |
| * * |
| **** **** |
| * * |
v * * v
+--------+ +--------+
| CA+ca | | AB+ab |
+--------+ +--------+
+------------------------------+
|LEGEND: |
| ***** DIT containment |
| + auxiliary attachment |
| ----> DN reference |
+------------------------------+
Figure 4 Rule-Specific Policy Conditions and Actions
Strassner, et al. Standards Track [Page 12]
RFC 3703 Policy Core LDAP Schema February 2004
Because the condition and action are specific to Rule1, the auxiliary
classes ca and ab that represent them are attached, respectively, to
the structural classes CA and AB. These structural classes represent
not the condition ca and action ab themselves, but rather the
associations between Rule1 and ca, and between Rule1 and ab.
As Figure 4 illustrates, Rule1 contains DN references to the
structural classes CA and AB that appear below it in the DIT. At
first glance it might appear that these DN references are
unnecessary, since a subtree search below Rule1 would find all of the
structural classes representing the associations between Rule1 and
its conditions and actions. Relying only on a subtree search,
though, runs the risk of missing conditions or actions that should
have appeared in the subtree, but for some reason did not, or of
finding conditions or actions that were inadvertently placed in the
subtree, or that should have been removed from the subtree, but for
some reason were not. Implementation experience has suggested that
many (but not all) of these risks are eliminated.
However, it must be noted that this comes at a price. The use of DN
references, as shown in Figure 4 above, thwarts inheritance of access
control information as well as existence dependency information. It
also is subject to referential integrity considerations. Therefore,
it is being included as an option for the designer.
Figure 5 illustrates a second way of representing rule-specific
conditions and actions in an LDAP-accessible directory: attachment of
the auxiliary classes directly to the instance representing the
policy rule. When all of the conditions and actions are attached to
a policy rule in this way, the rule is termed a "simple" policy rule.
When conditions and actions are not attached directly to a policy
rule, the rule is termed a "complex" policy rule.
+-----------+
|Rule1+ca+ab|
| |
+-----------+
+------------------------------+
|LEGEND: |
| + auxiliary attachment |
+------------------------------+
Figure 5. A Simple Policy Rule
Strassner, et al. Standards Track [Page 13]
RFC 3703 Policy Core LDAP Schema February 2004
The simple/complex distinction for a policy rule is not all or
nothing. A policy rule may have its conditions attached to itself
and its actions attached to other entries, or it may have its actions
attached to itself and its conditions attached to other entries.
However, it SHALL NOT have either its conditions or its actions
attached both to itself and to other entries, with one exception: a
policy rule may reference its validity periods with the
pcimRuleValidityPeriodList attribute, but have its other conditions
attached to itself.
The tradeoffs between simple and complex policy rules are between the
efficiency of simple rules and the flexibility and greater potential
for reuse of complex rules. With a simple policy rule, the semantic
options are limited:
- All conditions are ANDed together. This combination can be
represented in two ways in the Disjunctive Normal Form (DNF)/
Conjunctive Normal Form (CNF) (please see [1] for definitions of
these terms) expressions characteristic of policy conditions: as
a DNF expression with a single AND group, or as a CNF expression
with multiple single-condition OR groups. The first of these is
arbitrarily chosen as the representation for the ANDed conditions
in a simple policy rule.
- If multiple actions are included, no order can be specified for
them.
If a policy administrator needs to combine conditions in some other
way, or if there is a set of actions that must be ordered, then the
only option is to use a complex policy rule.
Finally, Figure 6 illustrates the same policy rule Rule1, but this
time its condition and action are reusable. The association classes
CA and AB are still present, and they are still DIT contained under
Rule1. But rather than having the auxiliary classes ca and ab
attached directly to the association classes CA and AB, each now
contains DN references to other entries to which these auxiliary
classes are attached. These other entries, CIA and AIB, are DIT
contained under RepositoryX, which is an instance of the class
pcimRepository. Because they are named under an instance of
pcimRepository, ca and ab are clearly identified as reusable.
Strassner, et al. Standards Track [Page 14]
RFC 3703 Policy Core LDAP Schema February 2004
+-----+ +-------------+
|Rule1| | RepositoryX |
+-|- -|--+ | |
| +-----+ | +-------------+
| * * | * *
| * * | * *
| *** **** | * *
| * * v * *
| * +---+ * *
| * |AB | +------+ *
v * | -|-------->|AIB+ab| *
+---+ +---+ +------+ *
|CA | +------+
| -|------------------------>|CIA+ca|
+---+ +------+
+------------------------------+
|LEGEND: |
| ***** DIT containment |
| + auxiliary attachment |
| ----> DN reference |
+------------------------------+
Figure 6. Reusable Policy Conditions and Actions
The classes pcimConditionAuxClass and pcimActionAuxClass do not
themselves represent actual conditions and actions: these are
introduced in their subclasses. What pcimConditionAuxClass and
pcimActionAuxClass do introduce are the semantics of being a policy
condition or a policy action. These are the semantics that all the
subclasses of pcimConditionAuxClass and pcimActionAuxClass inherit.
Among these semantics are those of representing either a
rule-specific or a reusable policy condition or policy action.
In order to preserve the ability to represent a rule-specific or a
reusable condition or action, as well as a simple policy rule, all
the subclasses of pcimConditionAuxClass and pcimActionAuxClass MUST
also be auxiliary classes.
Strassner, et al. Standards Track [Page 15]
RFC 3703 Policy Core LDAP Schema February 2004
4.5. Location and Retrieval of Policy Objects in the Directory
When a Policy Decision Point (PDP) goes to an LDAP directory to
retrieve the policy object instances relevant to the Policy
Enforcement Points (PEPs) it serves, it is faced with two related
problems:
- How does it locate and retrieve the directory entries that apply
to its PEPs? These entries may include instances of the PCLS
classes, instances of domain-specific subclasses of these
classes, and instances of other classes modeling such resources
as user groups, interfaces, and address ranges.
- How does it retrieve the directory entries it needs in an
efficient manner, so that retrieval of policy information from
the directory does not become a roadblock to scalability? There
are two facets to this efficiency: retrieving only the relevant
directory entries, and retrieving these entries using as few LDAP
calls as possible.
The placement of objects in the Directory Information Tree (DIT)
involves considerations other than how the policy-related objects
will be retrieved by a PDP. Consequently, all that the PCLS can do
is to provide a "toolkit" of classes to assist the policy
administrator as the DIT is being designed and built. A PDP SHOULD
be able to take advantage of any tools that the policy administrator
is able to build into the DIT, but it MUST be able to use a less
efficient means of retrieval if that is all it has available to it.
The basic idea behind the LDAP optimization classes is a simple one:
make it possible for a PDP to retrieve all the policy-related objects
it needs, and only those objects, using as few LDAP calls as
possible. An important assumption underlying this approach is that
the policy administrator has sufficient control over the underlying
DIT structure to define subtrees for storing policy information. If
the policy administrator does not have this level of control over DIT
structure, a PDP can still retrieve the policy-related objects it
needs individually. But it will require more LDAP access operations
to do the retrieval in this way. Figure 7 illustrates how LDAP
optimization is accomplished.
Strassner, et al. Standards Track [Page 16]
RFC 3703 Policy Core LDAP Schema February 2004
+-----+
---------------->| A |
DN reference to | | DN references to subtrees +---+
starting object +-----+ +-------------------------->| C |
| o--+----+ +---+ +---+
| o--+------------->| B | / \
+-----+ +---+ / \
/ \ / \ / ... \
/ \ / \
/ \ / ... \
Figure 7. Using the pcimSubtreesPtrAuxClass to Locate Policies
The PDP is configured initially with a DN reference to some entry in
the DIT. The structural class of this entry is not important; the
PDP is interested only in the pcimSubtreesPtrAuxClass attached to it.
This auxiliary class contains a multi-valued attribute with DN
references to objects that anchor subtrees containing policy-related
objects of interest to the PDP. Since pcimSubtreesPtrAuxClass is an
auxiliary class, it can be attached to an entry that the PDP would
need to access anyway - perhaps an entry containing initial
configuration settings for the PDP, or for a PEP that uses the PDP.
Once it has retrieved the DN references, the PDP will direct to each
of the objects identified by them an LDAP request that all entries in
its subtree be evaluated against the selection criteria specified in
the request. The LDAP-enabled directory then returns all entries in
that subtree that satisfy the specified criteria.
The selection criteria always specify that object class="pcimPolicy".
Since all classes representing policy rules, policy conditions, and
policy actions, both in the PCLS and in any domain-specific schema
derived from it, are subclasses of the abstract class policy, this
criterion evaluates to TRUE for all instances of these classes. To
accommodate special cases where a PDP needs to retrieve objects that
are not inherently policy-related (for example, an IP address range
object referenced by a subclass of pcimActionAuxClass representing
the DHCP action "assign from this address range"), the auxiliary
class pcimElementAuxClass can be used to "tag" an entry, so that it
will be found by the selection criterion "object class=pcimPolicy".
The approach described in the preceding paragraph will not work for
certain directory implementations, because these implementations do
not support matching of auxiliary classes in the objectClass
attribute. For environments where these implementations are expected
to be present, the "tagging" of entries as relevant to policy can be
Strassner, et al. Standards Track [Page 17]
RFC 3703 Policy Core LDAP Schema February 2004
accomplished by inserting the special value "POLICY" into the list of
values contained in the pcimKeywords attribute (provided by the
pcimPolicy class).
If a PDP needs only a subset of the policy-related objects in the
indicated subtrees, then it can be configured with additional
selection criteria based on the pcimKeywords attribute defined in the
pcimPolicy class. This attribute supports both standardized and
administrator- defined values. For example, a PDP could be
configured to request only those policy-related objects containing
the keywords "DHCP" and "Eastern US".
To optimize what is expected to be a typical case, the initial
request from the client includes not only the object to which its
"seed" DN references, but also the subtree contained under this
object. The filter for searching this subtree is whatever the client
is going to use later to search the other subtrees: object
class="pcimPolicy" or the presence of the keyword "POLICY", and/or
presence of a more specific value of pcimKeywords (e.g., "QoS Edge
Policy").
Returning to the example in Figure 7, we see that in the best case, a
PDP can get all the policy-related objects it needs, and only those
objects, with exactly three LDAP requests: one to its starting
object A to get the references to B and C, as well as the
policy-related objects it needs from the subtree under A, and then
one each to B and C to get all the policy-related objects that pass
the selection criteria with which it was configured. Once it has
retrieved all of these objects, the PDP can then traverse their
various DN references locally to understand the semantic
relationships among them. The PDP should also be prepared to find a
reference to another subtree attached to any of the objects it
retrieves, and to follow this reference first, before it follows any
of the semantically significant references it has received. This
recursion permits a structured approach to identifying related
policies. In Figure 7, for example, if the subtree under B includes
departmental policies and the one under C includes divisional
policies, then there might be a reference from the subtree under C to
an object D that roots the subtree of corporate-level policies.
A PDP SHOULD understand the pcimSubtreesPtrAuxClass class, SHOULD be
capable of retrieving and processing the entries in the subtrees it
references, and SHOULD be capable of doing all of this recursively.
The same requirements apply to any other entity needing to retrieve
policy information from the directory. Thus, a Policy Management
Tool that retrieves policy entries from the directory in order to
perform validation and conflict detection SHOULD also understand and
be capable of using the pcimSubtreesPtrAuxClass. All of these
Strassner, et al. Standards Track [Page 18]
RFC 3703 Policy Core LDAP Schema February 2004
requirements are "SHOULD"s rather than "MUST"s because an LDAP client
that doesn't implement them can still access and retrieve the
directory entries it needs. The process of doing so will just be
less efficient than it would have been if the client had implemented
these optimizations.
When it is serving as a tool for creating policy entries in the
directory, a Policy Management Tool SHOULD support creation of
pcimSubtreesPtrAuxClass entries and their references to object
instances.
4.5.1. Aliases and Other DIT-Optimization Techniques
Additional flexibility in DIT structure is available to the policy
administrator via LDAP aliasing and other techniques. Previous
versions of this document have used aliases. However, because
aliases are experimental, the use of aliases has been removed from
this version of this document. This is because the IETF has yet to
produce a specification on how aliases are represented in the
directory or how server implementations are to process aliases.
5. Class Definitions
The semantics for the policy information classes that are to be
mapped directly from the information model to an LDAP representation
are detailed in [1]. Consequently, all that this document presents
for these classes is the specification for how to do the mapping from
the information model (which is independent of repository type and
access protocol) to a form that can be accessed using LDAP. Remember
that some new classes needed to be created (that were not part of
[1]) to implement the LDAP mapping. These new LDAP-only classes are
fully documented in this document.
The formal language for specifying the classes, attributes, and DIT
structure and content rules is that defined in reference [3]. If
your implementation does not support auxiliary class inheritance, you
will have to list auxiliary classes in content rules explicitly or
define them in another (implementation-specific) way.
The following notes apply to this section in its entirety.
Note 1: in the following definitions, the class and attribute
definitions follow RFC 2252 [3] but they are line-wrapped to enhance
human readability.
Note 2: where applicable, the possibilities for specifying DIT
structure and content rules are noted. However, care must be taken
in specifying DIT structure rules. This is because X.501 [4] states
Strassner, et al. Standards Track [Page 19]
RFC 3703 Policy Core LDAP Schema February 2004
that an entry may only exist in the DIT as a subordinate to another
superior entry (the superior) if a DIT structure rule exists in the
governing subschema which:
1) indicates a name form for the structural object class of the
subordinate entry, and
2) either includes the entry's superior structure rule as a possible
superior structure rule, or
3) does not specify a superior structure rule.
If this last case (3) applies, then the entry is defined to be a
subschema administrative point. This is not what is desired.
Therefore, care must be taken in defining structure rules, and in
particular, they must be locally augmented.
Note 3: Wherever possible, both an equality and a substring matching
rule are defined for a particular attribute (as well as an ordering
match rule to enable sorting of matching results). This provides two
different choices for the developer for maximum flexibility.
For example, consider the pcimRoles attribute (section 5.3). Suppose
that a PEP has reported that it is interested in pcimRules for three
roles R1, R2, and R3. If the goal is to minimize queries, then the
PDP can supply three substring filters containing the three role
names.
These queries will return all of the pcimRules that apply to the PEP,
but they may also get some that do not apply (e.g., ones that contain
one of the roles R1, R2, or R3 and one or more other roles present in
a role-combination [1]).
Another strategy would be for the PDP to use only equality filters.
This approach eliminates the extraneous replies, but it requires the
PDP to explicitly build the desired role-combinations itself. It
also requires extra queries. Note that this approach is practical
only because the role names in a role combination are required to
appear in alphabetical order.
Note 4: in the following definitions, note that all LDAP matching
rules are defined in [3] and in [9]. The corresponding X.500
matching rules are defined in [8].
Note 5: some of the following attribute definitions specify
additional constraints on various data types (e.g., this integer has
values that are valid from 1..10). Text has been added to instruct
servers and applications what to do if a value outside of this range
Strassner, et al. Standards Track [Page 20]
RFC 3703 Policy Core LDAP Schema February 2004
is encountered. In all cases, if a constraint is violated, then the
policy rule SHOULD be treated as being disabled, meaning that
execution of the policy rule SHOULD be stopped.
5.1. The Abstract Class pcimPolicy
The abstract class pcimPolicy is a direct mapping of the abstract
class Policy from the PCIM. The class value "pcimPolicy" is also
used as the mechanism for identifying policy-related instances in the
Directory Information Tree. An instance of any class may be "tagged"
with this class value by attaching to it the auxiliary class
pcimElementAuxClass. Since pcimPolicy is derived from the class
dlm1ManagedElement defined in reference [6], this specification has a
normative dependency on that element of reference [6].
The class definition is as follows:
( 1.3.6.1.1.6.1.1 NAME 'pcimPolicy'
DESC 'An abstract class that is the base class for all classes
that describe policy-related instances.'
SUP dlm1ManagedElement
ABSTRACT
MAY ( cn $ dlmCaption $ dlmDescription $ orderedCimKeys $
pcimKeywords )
)
The attribute cn is defined in RFC 2256 [7]. The dlmCaption,
dlmDescription, and orderedCimKeys attributes are defined in [6].
The pcimKeywords attribute is a multi-valued attribute that contains
a set of keywords to assist directory clients in locating the policy
objects identified by these keywords. It is defined as follows:
( 1.3.6.1.1.6.2.3 NAME 'pcimKeywords'
DESC 'A set of keywords to assist directory clients in
locating the policy objects applicable to them.'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)
Strassner, et al. Standards Track [Page 21]
RFC 3703 Policy Core LDAP Schema February 2004
5.2. The Three Policy Group Classes
PCIM [1] defines the PolicyGroup class to serve as a generalized
aggregation mechanism, enabling PolicyRules and/or PolicyGroups to be
aggregated together. PCLS maps this class into three LDAP classes,
called pcimGroup, pcimGroupAuxClass, and pcimGroupInstance. This is
done in order to provide maximum flexibility for the DIT designer.
The class definitions for the three policy group classes are listed
below. These class definitions do not include attributes to realize
the PolicyRuleInPolicyGroup and PolicyGroupInPolicyGroup associations
from the PCIM. This is because a pcimGroup object refers to
instances of pcimGroup and pcimRule via, respectively, the attribute
pcimGroupsAuxContainedSet in the pcimGroupContainmentAuxClass object
class and the attribute pcimRulesAuxContainedSet in the
pcimRuleContainmentAuxClass object class.
To maximize flexibility, the pcimGroup class is defined as abstract.
The subclass pcimGroupAuxClass provides for auxiliary attachment to
another entry, while the structural subclass pcimGroupInstance is
available to represent a policy group as a standalone entry.
The class definitions are as follows. First, the definition of the
abstract class pcimGroup:
( 1.3.6.1.1.6.1.2 NAME 'pcimGroup'
DESC 'A container for a set of related pcimRules and/or
a set of related pcimGroups.'
SUP pcimPolicy
ABSTRACT
MAY ( pcimGroupName )
)
The one attribute of pcimGroup is pcimGroupName. This attribute is
used to define a user-friendly name of this policy group, and may be
used as a naming attribute if desired. It is defined as follows:
( 1.3.6.1.1.6.2.4 NAME 'pcimGroupName'
DESC 'The user-friendly name of this policy group.'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
)
Strassner, et al. Standards Track [Page 22]
RFC 3703 Policy Core LDAP Schema February 2004
The two subclasses of pcimGroup are defined as follows. The class
pcimGroupAuxClass is an auxiliary class that can be used to collect a
set of related pcimRule and/or pcimGroup classes. It is defined as
follows:
( 1.3.6.1.1.6.1.3 NAME 'pcimGroupAuxClass'
DESC 'An auxiliary class that collects a set of related
pcimRule and/or pcimGroup entries.'
SUP pcimGroup
AUXILIARY
)
The class pcimGroupInstance is a structural class that can be used to
collect a set of related pcimRule and/or pcimGroup classes. It is
defined as follows:
( 1.3.6.1.1.6.1.4 NAME 'pcimGroupInstance'
DESC 'A structural class that collects a set of related
pcimRule and/or pcimGroup entries.'
SUP pcimGroup
STRUCTURAL
)
A DIT content rule could be written to enable an instance of
pcimGroupInstance to have attached to it either references to one or
more policy groups (using pcimGroupContainmentAuxClass) or references
to one or more policy rules (using pcimRuleContainmentAuxClass).
This would be used to formalize the semantics of the PolicyGroup
class [1]. Since these semantics do not include specifying any
properties of the PolicyGroup class, the content rule would not need
to specify any attributes.
Similarly, three separate DIT structure rules could be written, each
of which would refer to a specific name form that identified one of
the three possible naming attributes (i.e., pcimGroupName, cn, and
orderedCIMKeys) for the pcimGroup object class. This structure rule
SHOULD include a superiorStructureRule (see Note 2 at the beginning
of section 5). The three name forms referenced by the three
structure rules would each define one of the three naming attributes.
5.3. The Three Policy Rule Classes
The information model defines a PolicyRule class to represent the "If
Condition then Action" semantics associated with processing policy
information. For maximum flexibility, the PCLS maps this class into
three LDAP classes.
Strassner, et al. Standards Track [Page 23]
RFC 3703 Policy Core LDAP Schema February 2004
To maximize flexibility, the pcimRule class is defined as abstract.
The subclass pcimRuleAuxClass provides for auxiliary attachment to
another entry, while the structural subclass pcimRuleInstance is
available to represent a policy rule as a standalone entry.
The conditions and actions associated with a policy rule are modeled,
respectively, with auxiliary subclasses of the auxiliary classes
pcimConditionAuxClass and pcimActionAuxClass. Each of these
auxiliary subclasses is attached to an instance of one of three
structural classes. A subclass of pcimConditionAuxClass is attached
to an instance of pcimRuleInstance, to an instance of
pcimRuleConditionAssociation, or to an instance of
pcimPolicyInstance. Similarly, a subclass of pcimActionAuxClass is
attached to an instance of pcimRuleInstance, to an instance of
pcimRuleActionAssociation, or to an instance of pcimPolicyInstance.
The pcimRuleValidityPeriodList attribute (defined below) realizes the
PolicyRuleValidityPeriod association defined in the PCIM. Since this
association has no additional properties besides those that tie the
association to its associated objects, this association can be
realized by simply using an attribute. Thus, the
pcimRuleValidityPeriodList attribute is simply a multi-valued
attribute that provides an unordered set of DN references to one or
more instances of the pcimTPCAuxClass, indicating when the policy
rule is scheduled to be active and when it is scheduled to be
inactive. A policy rule is scheduled to be active if it is active
according to AT LEAST ONE of the pcimTPCAuxClass instances referenced
by this attribute.
The PolicyConditionInPolicyRule and PolicyActionInPolicyRule
associations, however, do have additional attributes. The
association PolicyActionInPolicyRule defines an integer attribute to
sequence the actions, and the association PolicyConditionInPolicyRule
has both an integer attribute to group the condition terms as well as
a Boolean property to specify whether a condition is to be negated.
In the PCLS, these additional association attributes are represented
as attributes of two classes introduced specifically to model these
associations. These classes are the pcimRuleConditionAssociation
class and the pcimRuleActionAssociation class, which are defined in
Sections 5.4 and 5.5, respectively. Thus, they do not appear as
attributes of the class pcimRule. Instead, the pcimRuleConditionList
and pcimRuleActionList attributes can be used to reference these
classes.
Strassner, et al. Standards Track [Page 24]
RFC 3703 Policy Core LDAP Schema February 2004
The class definitions for the three pcimRule classes are as follows.
The abstract class pcimRule is a base class for representing the "If
Condition then Action" semantics associated with a policy rule. It
is defined as follows:
( 1.3.6.1.1.6.1.5 NAME 'pcimRule'
DESC 'The base class for representing the "If Condition
then Action" semantics associated with a policy rule.'
SUP pcimPolicy
ABSTRACT
MAY ( pcimRuleName $ pcimRuleEnabled $
pcimRuleConditionListType $ pcimRuleConditionList $
pcimRuleActionList $ pcimRuleValidityPeriodList $
pcimRuleUsage $ pcimRulePriority $
pcimRuleMandatory $ pcimRuleSequencedActions $
pcimRoles )
)
The PCIM [1] defines seven properties for the PolicyRule class. The
PCLS defines eleven attributes for the pcimRule class, which is the
LDAP equivalent of the PolicyRule class. Of these eleven attributes,
seven are mapped directly from corresponding properties in PCIM's
PolicyRule class. The remaining four attributes are a class-specific
optional naming attribute, and three attributes used to realize the
three associations that the pcimRule class participates in.
The pcimRuleName attribute is used as a user-friendly name of this
policy rule, and can also serve as the class-specific optional naming
attribute. It is defined as follows:
( 1.3.6.1.1.6.2.5 NAME 'pcimRuleName'
DESC 'The user-friendly name of this policy rule.'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
)
The pcimRuleEnabled attribute is an integer enumeration indicating
whether a policy rule is administratively enabled (value=1),
administratively disabled (value=2), or enabled for debug (value=3).
It is defined as follows:
( 1.3.6.1.1.6.2.6 NAME 'pcimRuleEnabled'
DESC 'An integer indicating whether a policy rule is
administratively enabled (value=1), disabled
Strassner, et al. Standards Track [Page 25]
RFC 3703 Policy Core LDAP Schema February 2004
(value=2), or enabled for debug (value=3).'
EQUALITY integerMatch
ORDERING integerOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
)
Note: All other values for the pcimRuleEnabled attribute are
considered errors, and the administrator SHOULD treat this rule as
being disabled if an invalid value is found.
The pcimRuleConditionListType attribute is used to indicate whether
the list of policy conditions associated with this policy rule is in
disjunctive normal form (DNF, value=1) or conjunctive normal form
(CNF, value=2). It is defined as follows:
( 1.3.6.1.1.6.2.7 NAME 'pcimRuleConditionListType'
DESC 'A value of 1 means that this policy rule is in
disjunctive normal form; a value of 2 means that this
policy rule is in conjunctive normal form.'
EQUALITY integerMatch
ORDERING integerOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
)
Note: any value other than 1 or 2 for the pcimRuleConditionListType
attribute is considered an error. Administrators SHOULD treat this
rule as being disabled if an invalid value is found, since it is
unclear how to structure the condition list.
The pcimRuleConditionList attribute is a multi-valued attribute that
is used to realize the policyRuleInPolicyCondition association
defined in [1]. It contains a set of DNs of
pcimRuleConditionAssociation entries representing associations
between this policy rule and its conditions. No order is implied.
It is defined as follows:
( 1.3.6.1.1.6.2.8 NAME 'pcimRuleConditionList'
DESC 'Unordered set of DNs of pcimRuleConditionAssociation
entries representing associations between this policy
rule and its conditions.'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)
Strassner, et al. Standards Track [Page 26]
RFC 3703 Policy Core LDAP Schema February 2004
The pcimRuleActionList attribute is a multi-valued attribute that is
used to realize the policyRuleInPolicyAction association defined in
[1]. It contains a set of DNs of pcimRuleActionAssociation entries
representing associations between this policy rule and its actions.
No order is implied. It is defined as follows:
( 1.3.6.1.1.6.2.9 NAME 'pcimRuleActionList'
DESC 'Unordered set of DNs of pcimRuleActionAssociation
entries representing associations between this policy
rule and its actions.'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)
The pcimRuleValidityPeriodList attribute is a multi-valued attribute
that is used to realize the pcimRuleValidityPeriod association that
is defined in [1]. It contains a set of DNs of
pcimRuleValidityAssociation entries that determine when the pcimRule
is scheduled to be active or inactive. No order is implied. It is
defined as follows:
( 1.3.6.1.1.6.2.10 NAME 'pcimRuleValidityPeriodList'
DESC 'Unordered set of DNs of pcimRuleValidityAssociation
entries that determine when the pcimRule is scheduled
to be active or inactive.'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)
The pcimRuleUsage attribute is a free-form string providing
guidelines on how this policy should be used. It is defined as
follows:
( 1.3.6.1.1.6.2.11 NAME 'pcimRuleUsage'
DESC 'This attribute is a free-form sting providing
guidelines on how this policy should be used.'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
)
Strassner, et al. Standards Track [Page 27]
RFC 3703 Policy Core LDAP Schema February 2004
The pcimRulePriority attribute is a non-negative integer that is used
to prioritize this pcimRule relative to other pcimRules. A larger
value indicates a higher priority. It is defined as follows:
( 1.3.6.1.1.6.2.12 NAME 'pcimRulePriority'
DESC 'A non-negative integer for prioritizing this
pcimRule relative to other pcimRules. A larger
value indicates a higher priority.'
EQUALITY integerMatch
ORDERING integerOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
)
Note: if the value of the pcimRulePriority field is 0, then it SHOULD
be treated as "don't care". On the other hand, if the value is
negative, then it SHOULD be treated as an error and Administrators
SHOULD treat this rule as being disabled.
The pcimRuleMandatory attribute is a Boolean attribute that, if TRUE,
indicates that for this policy rule, the evaluation of its conditions
and execution of its actions (if the condition is satisfied) is
required. If it is FALSE, then the evaluation of its conditions and
execution of its actions (if the condition is satisfied) is not
required. This attribute is defined as follows:
( 1.3.6.1.1.6.2.13 NAME 'pcimRuleMandatory'
DESC 'If TRUE, indicates that for this policy rule, the
evaluation of its conditions and execution of its
actions (if the condition is satisfied) is required.'
EQUALITY booleanMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
)
The pcimRuleSequencedActions attribute is an integer enumeration that
is used to indicate that the ordering of actions defined by the
pcimActionOrder attribute is either mandatory(value=1),
recommended(value=2), or dontCare(value=3). It is defined as
follows:
( 1.3.6.1.1.6.2.14 NAME 'pcimRuleSequencedActions'
DESC 'An integer enumeration indicating that the ordering of
actions defined by the pcimActionOrder attribute is
mandatory(1), recommended(2), or dontCare(3).'
EQUALITY integerMatch
ORDERING integerOrderingMatch
Strassner, et al. Standards Track [Page 28]
RFC 3703 Policy Core LDAP Schema February 2004
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
)
Note: if the value of pcimRulesSequencedActions field is not one of
these three values, then Administrators SHOULD treat this rule as
being disabled.
The pcimRoles attribute represents the policyRoles property of [1].
Each value of this attribute represents a role-combination, which is
a string of the form: