/**
* @license
* Copyright 2010-2021 Three.js Authors
* SPDX-License-Identifier: MIT
*/
const REVISION = '129';
const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 };
const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
const CullFaceNone = 0;
const CullFaceBack = 1;
const CullFaceFront = 2;
const CullFaceFrontBack = 3;
const BasicShadowMap = 0;
const PCFShadowMap = 1;
const PCFSoftShadowMap = 2;
const VSMShadowMap = 3;
const FrontSide = 0;
const BackSide = 1;
const DoubleSide = 2;
const FlatShading = 1;
const SmoothShading = 2;
const NoBlending = 0;
const NormalBlending = 1;
const AdditiveBlending = 2;
const SubtractiveBlending = 3;
const MultiplyBlending = 4;
const CustomBlending = 5;
const AddEquation = 100;
const SubtractEquation = 101;
const ReverseSubtractEquation = 102;
const MinEquation = 103;
const MaxEquation = 104;
const ZeroFactor = 200;
const OneFactor = 201;
const SrcColorFactor = 202;
const OneMinusSrcColorFactor = 203;
const SrcAlphaFactor = 204;
const OneMinusSrcAlphaFactor = 205;
const DstAlphaFactor = 206;
const OneMinusDstAlphaFactor = 207;
const DstColorFactor = 208;
const OneMinusDstColorFactor = 209;
const SrcAlphaSaturateFactor = 210;
const NeverDepth = 0;
const AlwaysDepth = 1;
const LessDepth = 2;
const LessEqualDepth = 3;
const EqualDepth = 4;
const GreaterEqualDepth = 5;
const GreaterDepth = 6;
const NotEqualDepth = 7;
const MultiplyOperation = 0;
const MixOperation = 1;
const AddOperation = 2;
const NoToneMapping = 0;
const LinearToneMapping = 1;
const ReinhardToneMapping = 2;
const CineonToneMapping = 3;
const ACESFilmicToneMapping = 4;
const CustomToneMapping = 5;
const UVMapping = 300;
const CubeReflectionMapping = 301;
const CubeRefractionMapping = 302;
const EquirectangularReflectionMapping = 303;
const EquirectangularRefractionMapping = 304;
const CubeUVReflectionMapping = 306;
const CubeUVRefractionMapping = 307;
const RepeatWrapping = 1000;
const ClampToEdgeWrapping = 1001;
const MirroredRepeatWrapping = 1002;
const NearestFilter = 1003;
const NearestMipmapNearestFilter = 1004;
const NearestMipMapNearestFilter = 1004;
const NearestMipmapLinearFilter = 1005;
const NearestMipMapLinearFilter = 1005;
const LinearFilter = 1006;
const LinearMipmapNearestFilter = 1007;
const LinearMipMapNearestFilter = 1007;
const LinearMipmapLinearFilter = 1008;
const LinearMipMapLinearFilter = 1008;
const UnsignedByteType = 1009;
const ByteType = 1010;
const ShortType = 1011;
const UnsignedShortType = 1012;
const IntType = 1013;
const UnsignedIntType = 1014;
const FloatType = 1015;
const HalfFloatType = 1016;
const UnsignedShort4444Type = 1017;
const UnsignedShort5551Type = 1018;
const UnsignedShort565Type = 1019;
const UnsignedInt248Type = 1020;
const AlphaFormat = 1021;
const RGBFormat = 1022;
const RGBAFormat = 1023;
const LuminanceFormat = 1024;
const LuminanceAlphaFormat = 1025;
const RGBEFormat = RGBAFormat;
const DepthFormat = 1026;
const DepthStencilFormat = 1027;
const RedFormat = 1028;
const RedIntegerFormat = 1029;
const RGFormat = 1030;
const RGIntegerFormat = 1031;
const RGBIntegerFormat = 1032;
const RGBAIntegerFormat = 1033;
const RGB_S3TC_DXT1_Format = 33776;
const RGBA_S3TC_DXT1_Format = 33777;
const RGBA_S3TC_DXT3_Format = 33778;
const RGBA_S3TC_DXT5_Format = 33779;
const RGB_PVRTC_4BPPV1_Format = 35840;
const RGB_PVRTC_2BPPV1_Format = 35841;
const RGBA_PVRTC_4BPPV1_Format = 35842;
const RGBA_PVRTC_2BPPV1_Format = 35843;
const RGB_ETC1_Format = 36196;
const RGB_ETC2_Format = 37492;
const RGBA_ETC2_EAC_Format = 37496;
const RGBA_ASTC_4x4_Format = 37808;
const RGBA_ASTC_5x4_Format = 37809;
const RGBA_ASTC_5x5_Format = 37810;
const RGBA_ASTC_6x5_Format = 37811;
const RGBA_ASTC_6x6_Format = 37812;
const RGBA_ASTC_8x5_Format = 37813;
const RGBA_ASTC_8x6_Format = 37814;
const RGBA_ASTC_8x8_Format = 37815;
const RGBA_ASTC_10x5_Format = 37816;
const RGBA_ASTC_10x6_Format = 37817;
const RGBA_ASTC_10x8_Format = 37818;
const RGBA_ASTC_10x10_Format = 37819;
const RGBA_ASTC_12x10_Format = 37820;
const RGBA_ASTC_12x12_Format = 37821;
const RGBA_BPTC_Format = 36492;
const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
const LoopOnce = 2200;
const LoopRepeat = 2201;
const LoopPingPong = 2202;
const InterpolateDiscrete = 2300;
const InterpolateLinear = 2301;
const InterpolateSmooth = 2302;
const ZeroCurvatureEnding = 2400;
const ZeroSlopeEnding = 2401;
const WrapAroundEnding = 2402;
const NormalAnimationBlendMode = 2500;
const AdditiveAnimationBlendMode = 2501;
const TrianglesDrawMode = 0;
const TriangleStripDrawMode = 1;
const TriangleFanDrawMode = 2;
const LinearEncoding = 3000;
const sRGBEncoding = 3001;
const GammaEncoding = 3007;
const RGBEEncoding = 3002;
const LogLuvEncoding = 3003;
const RGBM7Encoding = 3004;
const RGBM16Encoding = 3005;
const RGBDEncoding = 3006;
const BasicDepthPacking = 3200;
const RGBADepthPacking = 3201;
const TangentSpaceNormalMap = 0;
const ObjectSpaceNormalMap = 1;
const ZeroStencilOp = 0;
const KeepStencilOp = 7680;
const ReplaceStencilOp = 7681;
const IncrementStencilOp = 7682;
const DecrementStencilOp = 7683;
const IncrementWrapStencilOp = 34055;
const DecrementWrapStencilOp = 34056;
const InvertStencilOp = 5386;
const NeverStencilFunc = 512;
const LessStencilFunc = 513;
const EqualStencilFunc = 514;
const LessEqualStencilFunc = 515;
const GreaterStencilFunc = 516;
const NotEqualStencilFunc = 517;
const GreaterEqualStencilFunc = 518;
const AlwaysStencilFunc = 519;
const StaticDrawUsage = 35044;
const DynamicDrawUsage = 35048;
const StreamDrawUsage = 35040;
const StaticReadUsage = 35045;
const DynamicReadUsage = 35049;
const StreamReadUsage = 35041;
const StaticCopyUsage = 35046;
const DynamicCopyUsage = 35050;
const StreamCopyUsage = 35042;
const GLSL1 = '100';
const GLSL3 = '300 es';
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
class EventDispatcher {
addEventListener( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
const listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
}
hasEventListener( type, listener ) {
if ( this._listeners === undefined ) return false;
const listeners = this._listeners;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
}
removeEventListener( type, listener ) {
if ( this._listeners === undefined ) return;
const listeners = this._listeners;
const listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
const index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
}
dispatchEvent( event ) {
if ( this._listeners === undefined ) return;
const listeners = this._listeners;
const listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
// Make a copy, in case listeners are removed while iterating.
const array = listenerArray.slice( 0 );
for ( let i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
event.target = null;
}
}
}
const _lut = [];
for ( let i = 0; i < 256; i ++ ) {
_lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );
}
let _seed = 1234567;
const DEG2RAD = Math.PI / 180;
const RAD2DEG = 180 / Math.PI;
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
function generateUUID() {
const d0 = Math.random() * 0xffffffff | 0;
const d1 = Math.random() * 0xffffffff | 0;
const d2 = Math.random() * 0xffffffff | 0;
const d3 = Math.random() * 0xffffffff | 0;
const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];
// .toUpperCase() here flattens concatenated strings to save heap memory space.
return uuid.toUpperCase();
}
function clamp( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
}
// compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
function euclideanModulo( n, m ) {
return ( ( n % m ) + m ) % m;
}
// Linear mapping from range to range
function mapLinear( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
}
// https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
function inverseLerp( x, y, value ) {
if ( x !== y ) {
return ( value - x ) / ( y - x );
} else {
return 0;
}
}
// https://en.wikipedia.org/wiki/Linear_interpolation
function lerp( x, y, t ) {
return ( 1 - t ) * x + t * y;
}
// http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
function damp( x, y, lambda, dt ) {
return lerp( x, y, 1 - Math.exp( - lambda * dt ) );
}
// https://www.desmos.com/calculator/vcsjnyz7x4
function pingpong( x, length = 1 ) {
return length - Math.abs( euclideanModulo( x, length * 2 ) - length );
}
// http://en.wikipedia.org/wiki/Smoothstep
function smoothstep( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
}
function smootherstep( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
}
// Random integer from interval
function randInt( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
}
// Random float from interval
function randFloat( low, high ) {
return low + Math.random() * ( high - low );
}
// Random float from <-range/2, range/2> interval
function randFloatSpread( range ) {
return range * ( 0.5 - Math.random() );
}
// Deterministic pseudo-random float in the interval [ 0, 1 ]
function seededRandom( s ) {
if ( s !== undefined ) _seed = s % 2147483647;
// Park-Miller algorithm
_seed = _seed * 16807 % 2147483647;
return ( _seed - 1 ) / 2147483646;
}
function degToRad( degrees ) {
return degrees * DEG2RAD;
}
function radToDeg( radians ) {
return radians * RAD2DEG;
}
function isPowerOfTwo( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
}
function ceilPowerOfTwo( value ) {
return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );
}
function floorPowerOfTwo( value ) {
return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );
}
function setQuaternionFromProperEuler( q, a, b, c, order ) {
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
// rotations are applied to the axes in the order specified by 'order'
// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
// angles are in radians
const cos = Math.cos;
const sin = Math.sin;
const c2 = cos( b / 2 );
const s2 = sin( b / 2 );
const c13 = cos( ( a + c ) / 2 );
const s13 = sin( ( a + c ) / 2 );
const c1_3 = cos( ( a - c ) / 2 );
const s1_3 = sin( ( a - c ) / 2 );
const c3_1 = cos( ( c - a ) / 2 );
const s3_1 = sin( ( c - a ) / 2 );
switch ( order ) {
case 'XYX':
q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
break;
case 'YZY':
q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
break;
case 'ZXZ':
q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
break;
case 'XZX':
q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
break;
case 'YXY':
q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
break;
case 'ZYZ':
q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
break;
default:
console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order );
}
}
var MathUtils = /*#__PURE__*/Object.freeze({
__proto__: null,
DEG2RAD: DEG2RAD,
RAD2DEG: RAD2DEG,
generateUUID: generateUUID,
clamp: clamp,
euclideanModulo: euclideanModulo,
mapLinear: mapLinear,
inverseLerp: inverseLerp,
lerp: lerp,
damp: damp,
pingpong: pingpong,
smoothstep: smoothstep,
smootherstep: smootherstep,
randInt: randInt,
randFloat: randFloat,
randFloatSpread: randFloatSpread,
seededRandom: seededRandom,
degToRad: degToRad,
radToDeg: radToDeg,
isPowerOfTwo: isPowerOfTwo,
ceilPowerOfTwo: ceilPowerOfTwo,
floorPowerOfTwo: floorPowerOfTwo,
setQuaternionFromProperEuler: setQuaternionFromProperEuler
});
class Vector2 {
constructor( x = 0, y = 0 ) {
this.x = x;
this.y = y;
}
get width() {
return this.x;
}
set width( value ) {
this.x = value;
}
get height() {
return this.y;
}
set height( value ) {
this.y = value;
}
set( x, y ) {
this.x = x;
this.y = y;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
return this;
}
add( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
}
sub( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
applyMatrix3( m ) {
const x = this.x, y = this.y;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
}
roundToZero() {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y;
}
cross( v ) {
return this.x * v.y - this.y * v.x;
}
lengthSq() {
return this.x * this.x + this.y * this.y;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
angle() {
// computes the angle in radians with respect to the positive x-axis
const angle = Math.atan2( - this.y, - this.x ) + Math.PI;
return angle;
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
}
fromBufferAttribute( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
}
rotateAround( center, angle ) {
const c = Math.cos( angle ), s = Math.sin( angle );
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
return this;
}
}
Vector2.prototype.isVector2 = true;
class Matrix3 {
constructor() {
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );
}
}
set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
}
identity() {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrix3Column( this, 0 );
yAxis.setFromMatrix3Column( this, 1 );
zAxis.setFromMatrix3Column( this, 2 );
return this;
}
setFromMatrix4( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
}
multiply( m ) {
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
}
invert() {
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ],
n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ],
n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
}
transpose() {
let tmp;
const m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
}
getNormalMatrix( matrix4 ) {
return this.setFromMatrix4( matrix4 ).invert().transpose();
}
transposeIntoArray( r ) {
const m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
}
setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) {
const c = Math.cos( rotation );
const s = Math.sin( rotation );
this.set(
sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
0, 0, 1
);
return this;
}
scale( sx, sy ) {
const te = this.elements;
te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;
te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;
return this;
}
rotate( theta ) {
const c = Math.cos( theta );
const s = Math.sin( theta );
const te = this.elements;
const a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];
const a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];
te[ 0 ] = c * a11 + s * a21;
te[ 3 ] = c * a12 + s * a22;
te[ 6 ] = c * a13 + s * a23;
te[ 1 ] = - s * a11 + c * a21;
te[ 4 ] = - s * a12 + c * a22;
te[ 7 ] = - s * a13 + c * a23;
return this;
}
translate( tx, ty ) {
const te = this.elements;
te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];
te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];
return this;
}
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
clone() {
return new this.constructor().fromArray( this.elements );
}
}
Matrix3.prototype.isMatrix3 = true;
let _canvas;
class ImageUtils {
static getDataURL( image ) {
if ( /^data:/i.test( image.src ) ) {
return image.src;
}
if ( typeof HTMLCanvasElement == 'undefined' ) {
return image.src;
}
let canvas;
if ( image instanceof HTMLCanvasElement ) {
canvas = image;
} else {
if ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
_canvas.width = image.width;
_canvas.height = image.height;
const context = _canvas.getContext( '2d' );
if ( image instanceof ImageData ) {
context.putImageData( image, 0, 0 );
} else {
context.drawImage( image, 0, 0, image.width, image.height );
}
canvas = _canvas;
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
console.warn( 'THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image );
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
}
let textureId = 0;
class Texture extends EventDispatcher {
constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding ) {
super();
Object.defineProperty( this, 'id', { value: textureId ++ } );
this.uuid = generateUUID();
this.name = '';
this.image = image;
this.mipmaps = [];
this.mapping = mapping;
this.wrapS = wrapS;
this.wrapT = wrapT;
this.magFilter = magFilter;
this.minFilter = minFilter;
this.anisotropy = anisotropy;
this.format = format;
this.internalFormat = null;
this.type = type;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.center = new Vector2( 0, 0 );
this.rotation = 0;
this.matrixAutoUpdate = true;
this.matrix = new Matrix3();
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding;
this.version = 0;
this.onUpdate = null;
}
updateMatrix() {
this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.image = source.image;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.internalFormat = source.internalFormat;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.center.copy( source.center );
this.rotation = source.rotation;
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrix.copy( source.matrix );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
const output = {
metadata: {
version: 4.5,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
center: [ this.center.x, this.center.y ],
rotation: this.rotation,
wrap: [ this.wrapS, this.wrapT ],
format: this.format,
type: this.type,
encoding: this.encoding,
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY,
premultiplyAlpha: this.premultiplyAlpha,
unpackAlignment: this.unpackAlignment
};
if ( this.image !== undefined ) {
// TODO: Move to THREE.Image
const image = this.image;
if ( image.uuid === undefined ) {
image.uuid = generateUUID(); // UGH
}
if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {
let url;
if ( Array.isArray( image ) ) {
// process array of images e.g. CubeTexture
url = [];
for ( let i = 0, l = image.length; i < l; i ++ ) {
// check cube texture with data textures
if ( image[ i ].isDataTexture ) {
url.push( serializeImage( image[ i ].image ) );
} else {
url.push( serializeImage( image[ i ] ) );
}
}
} else {
// process single image
url = serializeImage( image );
}
meta.images[ image.uuid ] = {
uuid: image.uuid,
url: url
};
}
output.image = image.uuid;
}
if ( ! isRootObject ) {
meta.textures[ this.uuid ] = output;
}
return output;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
transformUv( uv ) {
if ( this.mapping !== UVMapping ) return uv;
uv.applyMatrix3( this.matrix );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
return uv;
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
}
Texture.DEFAULT_IMAGE = undefined;
Texture.DEFAULT_MAPPING = UVMapping;
Texture.prototype.isTexture = true;
function serializeImage( image ) {
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
// default images
return ImageUtils.getDataURL( image );
} else {
if ( image.data ) {
// images of DataTexture
return {
data: Array.prototype.slice.call( image.data ),
width: image.width,
height: image.height,
type: image.data.constructor.name
};
} else {
console.warn( 'THREE.Texture: Unable to serialize Texture.' );
return {};
}
}
}
class Vector4 {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
get width() {
return this.z;
}
set width( value ) {
this.z = value;
}
get height() {
return this.w;
}
set height( value ) {
this.w = value;
}
set( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setW( w ) {
this.w = w;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z, this.w );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
}
add( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
}
sub( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
this.w *= v.w;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z, w = this.w;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
setAxisAngleFromQuaternion( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
const s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
}
setAxisAngleFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
let angle, x, y, z; // variables for result
const epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
const xx = ( m11 + 1 ) / 2;
const yy = ( m22 + 1 ) / 2;
const zz = ( m33 + 1 ) / 2;
const xy = ( m12 + m21 ) / 4;
const xz = ( m13 + m31 ) / 4;
const yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
this.w = Math.max( minVal, Math.min( maxVal, this.w ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
}
roundToZero() {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
}
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
this.w = v1.w + ( v2.w - v1.w ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
}
fromBufferAttribute( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
this.w = Math.random();
return this;
}
}
Vector4.prototype.isVector4 = true;
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
class WebGLRenderTarget extends EventDispatcher {
constructor( width, height, options ) {
super();
this.width = width;
this.height = height;
this.depth = 1;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
options = options || {};
this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.texture.image = {};
this.texture.image.width = width;
this.texture.image.height = height;
this.texture.image.depth = 1;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
}
setTexture( texture ) {
texture.image = {
width: this.width,
height: this.height,
depth: this.depth
};
this.texture = texture;
}
setSize( width, height, depth = 1 ) {
if ( this.width !== width || this.height !== height || this.depth !== depth ) {
this.width = width;
this.height = height;
this.depth = depth;
this.texture.image.width = width;
this.texture.image.height = height;
this.texture.image.depth = depth;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.width = source.width;
this.height = source.height;
this.depth = source.depth;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.texture.image = { ...this.texture.image }; // See #20328.
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
}
WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
class WebGLMultipleRenderTargets extends WebGLRenderTarget {
constructor( width, height, count ) {
super( width, height );
const texture = this.texture;
this.texture = [];
for ( let i = 0; i < count; i ++ ) {
this.texture[ i ] = texture.clone();
}
}
setSize( width, height, depth = 1 ) {
if ( this.width !== width || this.height !== height || this.depth !== depth ) {
this.width = width;
this.height = height;
this.depth = depth;
for ( let i = 0, il = this.texture.length; i < il; i ++ ) {
this.texture[ i ].image.width = width;
this.texture[ i ].image.height = height;
this.texture[ i ].image.depth = depth;
}
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
return this;
}
copy( source ) {
this.dispose();
this.width = source.width;
this.height = source.height;
this.depth = source.depth;
this.viewport.set( 0, 0, this.width, this.height );
this.scissor.set( 0, 0, this.width, this.height );
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
this.texture.length = 0;
for ( let i = 0, il = source.texture.length; i < il; i ++ ) {
this.texture[ i ] = source.texture[ i ].clone();
}
return this;
}
}
WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
constructor( width, height, options ) {
super( width, height, options );
this.samples = 4;
}
copy( source ) {
super.copy.call( this, source );
this.samples = source.samples;
return this;
}
}
WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
class Quaternion {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
}
static slerp( qa, qb, qm, t ) {
console.warn( 'THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.' );
return qm.slerpQuaternions( qa, qb, t );
}
static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
let x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( t === 0 ) {
dst[ dstOffset + 0 ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
return;
}
if ( t === 1 ) {
dst[ dstOffset + 0 ] = x1;
dst[ dstOffset + 1 ] = y1;
dst[ dstOffset + 2 ] = z1;
dst[ dstOffset + 3 ] = w1;
return;
}
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
let s = 1 - t;
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
const sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
const tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {
const x0 = src0[ srcOffset0 ];
const y0 = src0[ srcOffset0 + 1 ];
const z0 = src0[ srcOffset0 + 2 ];
const w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 ];
const y1 = src1[ srcOffset1 + 1 ];
const z1 = src1[ srcOffset1 + 2 ];
const w1 = src1[ srcOffset1 + 3 ];
dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
return dst;
}
get x() {
return this._x;
}
set x( value ) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y( value ) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z( value ) {
this._z = value;
this._onChangeCallback();
}
get w() {
return this._w;
}
set w( value ) {
this._w = value;
this._onChangeCallback();
}
set( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor( this._x, this._y, this._z, this._w );
}
copy( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this._onChangeCallback();
return this;
}
setFromEuler( euler, update ) {
if ( ! ( euler && euler.isEuler ) ) {
throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
const x = euler._x, y = euler._y, z = euler._z, order = euler._order;
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
const cos = Math.cos;
const sin = Math.sin;
const c1 = cos( x / 2 );
const c2 = cos( y / 2 );
const c3 = cos( z / 2 );
const s1 = sin( x / 2 );
const s2 = sin( y / 2 );
const s3 = sin( z / 2 );
switch ( order ) {
case 'XYZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'YXZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'ZXY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'ZYX':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'YZX':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'XZY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
default:
console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );
}
if ( update !== false ) this._onChangeCallback();
return this;
}
setFromAxisAngle( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
const halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this._onChangeCallback();
return this;
}
setFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33;
if ( trace > 0 ) {
const s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this._onChangeCallback();
return this;
}
setFromUnitVectors( vFrom, vTo ) {
// assumes direction vectors vFrom and vTo are normalized
let r = vFrom.dot( vTo ) + 1;
if ( r < Number.EPSILON ) {
// vFrom and vTo point in opposite directions
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
this._x = - vFrom.y;
this._y = vFrom.x;
this._z = 0;
this._w = r;
} else {
this._x = 0;
this._y = - vFrom.z;
this._z = vFrom.y;
this._w = r;
}
} else {
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
this._w = r;
}
return this.normalize();
}
angleTo( q ) {
return 2 * Math.acos( Math.abs( clamp( this.dot( q ), - 1, 1 ) ) );
}
rotateTowards( q, step ) {
const angle = this.angleTo( q );
if ( angle === 0 ) return this;
const t = Math.min( 1, step / angle );
this.slerp( q, t );
return this;
}
identity() {
return this.set( 0, 0, 0, 1 );
}
invert() {
// quaternion is assumed to have unit length
return this.conjugate();
}
conjugate() {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this._onChangeCallback();
return this;
}
dot( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
}
lengthSq() {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
}
length() {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
}
normalize() {
let l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this._onChangeCallback();
return this;
}
multiply( q, p ) {
if ( p !== undefined ) {
console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
return this.multiplyQuaternions( q, p );
}
return this.multiplyQuaternions( this, q );
}
premultiply( q ) {
return this.multiplyQuaternions( q, this );
}
multiplyQuaternions( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this._onChangeCallback();
return this;
}
slerp( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
const x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
if ( sqrSinHalfTheta <= Number.EPSILON ) {
const s = 1 - t;
this._w = s * w + t * this._w;
this._x = s * x + t * this._x;
this._y = s * y + t * this._y;
this._z = s * z + t * this._z;
this.normalize();
this._onChangeCallback();
return this;
}
const sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this._onChangeCallback();
return this;
}
slerpQuaternions( qa, qb, t ) {
this.copy( qa ).slerp( qb, t );
}
equals( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
}
fromArray( array, offset = 0 ) {
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this._onChangeCallback();
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
}
fromBufferAttribute( attribute, index ) {
this._x = attribute.getX( index );
this._y = attribute.getY( index );
this._z = attribute.getZ( index );
this._w = attribute.getW( index );
return this;
}
_onChange( callback ) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
}
Quaternion.prototype.isQuaternion = true;
class Vector3 {
constructor( x = 0, y = 0, z = 0 ) {
this.x = x;
this.y = y;
this.z = z;
}
set( x, y, z ) {
if ( z === undefined ) z = this.z; // sprite.scale.set(x,y)
this.x = x;
this.y = y;
this.z = z;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
}
add( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
return this.addVectors( v, w );
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
}
sub( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
return this.subVectors( v, w );
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
}
multiply( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
return this.multiplyVectors( v, w );
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
}
multiplyVectors( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
}
applyEuler( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
}
return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) );
}
applyAxisAngle( axis, angle ) {
return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) );
}
applyMatrix3( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
}
applyNormalMatrix( m ) {
return this.applyMatrix3( m ).normalize();
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
}
applyQuaternion( q ) {
const x = this.x, y = this.y, z = this.z;
const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// calculate quat * vector
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
}
project( camera ) {
return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );
}
unproject( camera ) {
return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );
}
transformDirection( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
}
roundToZero() {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
}
// TODO lengthSquared?
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
return this;
}
cross( v, w ) {
if ( w !== undefined ) {
console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
return this.crossVectors( v, w );
}
return this.crossVectors( this, v );
}
crossVectors( a, b ) {
const ax = a.x, ay = a.y, az = a.z;
const bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
}
projectOnVector( v ) {
const denominator = v.lengthSq();
if ( denominator === 0 ) return this.set( 0, 0, 0 );
const scalar = v.dot( this ) / denominator;
return this.copy( v ).multiplyScalar( scalar );
}
projectOnPlane( planeNormal ) {
_vector$c.copy( this ).projectOnVector( planeNormal );
return this.sub( _vector$c );
}
reflect( normal ) {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
}
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp( theta, - 1, 1 ) );
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
}
setFromSpherical( s ) {
return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
}
setFromSphericalCoords( radius, phi, theta ) {
const sinPhiRadius = Math.sin( phi ) * radius;
this.x = sinPhiRadius * Math.sin( theta );
this.y = Math.cos( phi ) * radius;
this.z = sinPhiRadius * Math.cos( theta );
return this;
}
setFromCylindrical( c ) {
return this.setFromCylindricalCoords( c.radius, c.theta, c.y );
}
setFromCylindricalCoords( radius, theta, y ) {
this.x = radius * Math.sin( theta );
this.y = y;
this.z = radius * Math.cos( theta );
return this;
}
setFromMatrixPosition( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
}
setFromMatrixScale( m ) {
const sx = this.setFromMatrixColumn( m, 0 ).length();
const sy = this.setFromMatrixColumn( m, 1 ).length();
const sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
}
setFromMatrixColumn( m, index ) {
return this.fromArray( m.elements, index * 4 );
}
setFromMatrix3Column( m, index ) {
return this.fromArray( m.elements, index * 3 );
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
}
fromBufferAttribute( attribute, index, offset ) {
if ( offset !== undefined ) {
console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );
}
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
return this;
}
}
Vector3.prototype.isVector3 = true;
const _vector$c = /*@__PURE__*/ new Vector3();
const _quaternion$4 = /*@__PURE__*/ new Quaternion();
class Box3 {
constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) {
this.min = min;
this.max = max;
}
set( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
}
setFromArray( array ) {
let minX = + Infinity;
let minY = + Infinity;
let minZ = + Infinity;
let maxX = - Infinity;
let maxY = - Infinity;
let maxZ = - Infinity;
for ( let i = 0, l = array.length; i < l; i += 3 ) {
const x = array[ i ];
const y = array[ i + 1 ];
const z = array[ i + 2 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
}
setFromBufferAttribute( attribute ) {
let minX = + Infinity;
let minY = + Infinity;
let minZ = + Infinity;
let maxX = - Infinity;
let maxY = - Infinity;
let maxZ = - Infinity;
for ( let i = 0, l = attribute.count; i < l; i ++ ) {
const x = attribute.getX( i );
const y = attribute.getY( i );
const z = attribute.getZ( i );
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( z < minZ ) minZ = z;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
if ( z > maxZ ) maxZ = z;
}
this.min.set( minX, minY, minZ );
this.max.set( maxX, maxY, maxZ );
return this;
}
setFromPoints( points ) {
this.makeEmpty();
for ( let i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
}
setFromCenterAndSize( center, size ) {
const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
}
setFromObject( object ) {
this.makeEmpty();
return this.expandByObject( object );
}
clone() {
return new this.constructor().copy( this );
}
copy( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
}
makeEmpty() {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
}
isEmpty() {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
}
getCenter( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getCenter() target is now required' );
target = new Vector3();
}
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
}
getSize( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getSize() target is now required' );
target = new Vector3();
}
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
}
expandByPoint( point ) {
this.min.min( point );
this.max.max( point );
return this;
}
expandByVector( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
}
expandByScalar( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
}
expandByObject( object ) {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
object.updateWorldMatrix( false, false );
const geometry = object.geometry;
if ( geometry !== undefined ) {
if ( geometry.boundingBox === null ) {
geometry.computeBoundingBox();
}
_box$3.copy( geometry.boundingBox );
_box$3.applyMatrix4( object.matrixWorld );
this.union( _box$3 );
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
this.expandByObject( children[ i ] );
}
return this;
}
containsPoint( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ? false : true;
}
containsBox( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
}
getParameter( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
if ( target === undefined ) {
console.warn( 'THREE.Box3: .getParameter() target is now required' );
target = new Vector3();
}
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
}
intersectsBox( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
}
intersectsSphere( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, _vector$b );
// If that point is inside the sphere, the AABB and sphere intersect.
return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
}
intersectsPlane( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
let min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= - plane.constant && max >= - plane.constant );
}
intersectsTriangle( triangle ) {
if ( this.isEmpty() ) {
return false;
}
// compute box center and extents
this.getCenter( _center );
_extents.subVectors( this.max, _center );
// translate triangle to aabb origin
_v0$2.subVectors( triangle.a, _center );
_v1$7.subVectors( triangle.b, _center );
_v2$3.subVectors( triangle.c, _center );
// compute edge vectors for triangle
_f0.subVectors( _v1$7, _v0$2 );
_f1.subVectors( _v2$3, _v1$7 );
_f2.subVectors( _v0$2, _v2$3 );
// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
let axes = [
0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
_f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
- _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
];
if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ) ) {
return false;
}
// test 3 face normals from the aabb
axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents ) ) {
return false;
}
// finally testing the face normal of the triangle
// use already existing triangle edge vectors here
_triangleNormal.crossVectors( _f0, _f1 );
axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];
return satForAxes( axes, _v0$2, _v1$7, _v2$3, _extents );
}
clampPoint( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Box3: .clampPoint() target is now required' );
target = new Vector3();
}
return target.copy( point ).clamp( this.min, this.max );
}
distanceToPoint( point ) {
const clampedPoint = _vector$b.copy( point ).clamp( this.min, this.max );
return clampedPoint.sub( point ).length();
}
getBoundingSphere( target ) {
if ( target === undefined ) {
console.error( 'THREE.Box3: .getBoundingSphere() target is now required' );
//target = new Sphere(); // removed to avoid cyclic dependency
}
this.getCenter( target.center );
target.radius = this.getSize( _vector$b ).length() * 0.5;
return target;
}
intersect( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if ( this.isEmpty() ) this.makeEmpty();
return this;
}
union( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
}
applyMatrix4( matrix ) {
// transform of empty box is an empty box.
if ( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
_points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
_points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
_points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
_points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
_points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
_points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
_points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
_points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( _points );
return this;
}
translate( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
}
equals( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
}
Box3.prototype.isBox3 = true;
const _points = [
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3()
];
const _vector$b = /*@__PURE__*/ new Vector3();
const _box$3 = /*@__PURE__*/ new Box3();
// triangle centered vertices
const _v0$2 = /*@__PURE__*/ new Vector3();
const _v1$7 = /*@__PURE__*/ new Vector3();
const _v2$3 = /*@__PURE__*/ new Vector3();
// triangle edge vectors
const _f0 = /*@__PURE__*/ new Vector3();
const _f1 = /*@__PURE__*/ new Vector3();
const _f2 = /*@__PURE__*/ new Vector3();
const _center = /*@__PURE__*/ new Vector3();
const _extents = /*@__PURE__*/ new Vector3();
const _triangleNormal = /*@__PURE__*/ new Vector3();
const _testAxis = /*@__PURE__*/ new Vector3();
function satForAxes( axes, v0, v1, v2, extents ) {
for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) {
_testAxis.fromArray( axes, i );
// project the aabb onto the seperating axis
const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
// project all 3 vertices of the triangle onto the seperating axis
const p0 = v0.dot( _testAxis );
const p1 = v1.dot( _testAxis );
const p2 = v2.dot( _testAxis );
// actual test, basically see if either of the most extreme of the triangle points intersects r
if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is seperating and we can exit
return false;
}
}
return true;
}
const _box$2 = /*@__PURE__*/ new Box3();
const _v1$6 = /*@__PURE__*/ new Vector3();
const _toFarthestPoint = /*@__PURE__*/ new Vector3();
const _toPoint = /*@__PURE__*/ new Vector3();
class Sphere {
constructor( center = new Vector3(), radius = - 1 ) {
this.center = center;
this.radius = radius;
}
set( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
}
setFromPoints( points, optionalCenter ) {
const center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
_box$2.setFromPoints( points ).getCenter( center );
}
let maxRadiusSq = 0;
for ( let i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
}
copy( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
}
isEmpty() {
return ( this.radius < 0 );
}
makeEmpty() {
this.center.set( 0, 0, 0 );
this.radius = - 1;
return this;
}
containsPoint( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
}
distanceToPoint( point ) {
return ( point.distanceTo( this.center ) - this.radius );
}
intersectsSphere( sphere ) {
const radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
}
intersectsBox( box ) {
return box.intersectsSphere( this );
}
intersectsPlane( plane ) {
return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;
}
clampPoint( point, target ) {
const deltaLengthSq = this.center.distanceToSquared( point );
if ( target === undefined ) {
console.warn( 'THREE.Sphere: .clampPoint() target is now required' );
target = new Vector3();
}
target.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
target.sub( this.center ).normalize();
target.multiplyScalar( this.radius ).add( this.center );
}
return target;
}
getBoundingBox( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );
target = new Box3();
}
if ( this.isEmpty() ) {
// Empty sphere produces empty bounding box
target.makeEmpty();
return target;
}
target.set( this.center, this.center );
target.expandByScalar( this.radius );
return target;
}
applyMatrix4( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
}
translate( offset ) {
this.center.add( offset );
return this;
}
expandByPoint( point ) {
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
_toPoint.subVectors( point, this.center );
const lengthSq = _toPoint.lengthSq();
if ( lengthSq > ( this.radius * this.radius ) ) {
const length = Math.sqrt( lengthSq );
const missingRadiusHalf = ( length - this.radius ) * 0.5;
// Nudge this sphere towards the target point. Add half the missing distance to radius,
// and the other half to position. This gives a tighter enclosure, instead of if
// the whole missing distance were just added to radius.
this.center.add( _toPoint.multiplyScalar( missingRadiusHalf / length ) );
this.radius += missingRadiusHalf;
}
return this;
}
union( sphere ) {
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
// To enclose another sphere into this sphere, we only need to enclose two points:
// 1) Enclose the farthest point on the other sphere into this sphere.
// 2) Enclose the opposite point of the farthest point into this sphere.
_toFarthestPoint.subVectors( sphere.center, this.center ).normalize().multiplyScalar( sphere.radius );
this.expandByPoint( _v1$6.copy( sphere.center ).add( _toFarthestPoint ) );
this.expandByPoint( _v1$6.copy( sphere.center ).sub( _toFarthestPoint ) );
return this;
}
equals( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
clone() {
return new this.constructor().copy( this );
}
}
const _vector$a = /*@__PURE__*/ new Vector3();
const _segCenter = /*@__PURE__*/ new Vector3();
const _segDir = /*@__PURE__*/ new Vector3();
const _diff = /*@__PURE__*/ new Vector3();
const _edge1 = /*@__PURE__*/ new Vector3();
const _edge2 = /*@__PURE__*/ new Vector3();
const _normal$1 = /*@__PURE__*/ new Vector3();
class Ray {
constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) {
this.origin = origin;
this.direction = direction;
}
set( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
}
copy( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
}
at( t, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Ray: .at() target is now required' );
target = new Vector3();
}
return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );
}
lookAt( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
return this;
}
recast( t ) {
this.origin.copy( this.at( t, _vector$a ) );
return this;
}
closestPointToPoint( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
target = new Vector3();
}
target.subVectors( point, this.origin );
const directionDistance = target.dot( this.direction );
if ( directionDistance < 0 ) {
return target.copy( this.origin );
}
return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
}
distanceToPoint( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
}
distanceSqToPoint( point ) {
const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
_vector$a.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );
return _vector$a.distanceToSquared( point );
}
distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
_segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
_segDir.copy( v1 ).sub( v0 ).normalize();
_diff.copy( this.origin ).sub( _segCenter );
const segExtent = v0.distanceTo( v1 ) * 0.5;
const a01 = - this.direction.dot( _segDir );
const b0 = _diff.dot( this.direction );
const b1 = - _diff.dot( _segDir );
const c = _diff.lengthSq();
const det = Math.abs( 1 - a01 * a01 );
let s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
const invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter );
}
return sqrDist;
}
intersectSphere( sphere, target ) {
_vector$a.subVectors( sphere.center, this.origin );
const tca = _vector$a.dot( this.direction );
const d2 = _vector$a.dot( _vector$a ) - tca * tca;
const radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
const thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
const t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
const t1 = tca + thc;
// test to see if both t0 and t1 are behind the ray - if so, return null
if ( t0 < 0 && t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, target );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, target );
}
intersectsSphere( sphere ) {
return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );
}
distanceToPlane( plane ) {
const denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
}
intersectPlane( plane, target ) {
const t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, target );
}
intersectsPlane( plane ) {
// check if the ray lies on the plane first
const distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
const denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
}
intersectBox( box, target ) {
let tmin, tmax, tymin, tymax, tzmin, tzmax;
const invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
const origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
// These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if ( tymin > tmin || tmin !== tmin ) tmin = tymin;
if ( tymax < tmax || tmax !== tmax ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, target );
}
intersectsBox( box ) {
return this.intersectBox( box, _vector$a ) !== null;
}
intersectTriangle( a, b, c, backfaceCulling, target ) {
// Compute the offset origin, edges, and normal.
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
_edge1.subVectors( b, a );
_edge2.subVectors( c, a );
_normal$1.crossVectors( _edge1, _edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
let DdN = this.direction.dot( _normal$1 );
let sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
_diff.subVectors( this.origin, a );
const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
const QdN = - sign * _diff.dot( _normal$1 );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, target );
}
applyMatrix4( matrix4 ) {
this.origin.applyMatrix4( matrix4 );
this.direction.transformDirection( matrix4 );
return this;
}
equals( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
clone() {
return new this.constructor().copy( this );
}
}
class Matrix4 {
constructor() {
this.elements = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
}
set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
}
identity() {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
}
clone() {
return new Matrix4().fromArray( this.elements );
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
return this;
}
copyPosition( m ) {
const te = this.elements, me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
}
setFromMatrix3( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 3 ], me[ 6 ], 0,
me[ 1 ], me[ 4 ], me[ 7 ], 0,
me[ 2 ], me[ 5 ], me[ 8 ], 0,
0, 0, 0, 1
);
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
}
makeBasis( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
}
extractRotation( m ) {
// this method does not support reflection matrices
const te = this.elements;
const me = m.elements;
const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length();
const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length();
const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 3 ] = 0;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 7 ] = 0;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
te[ 11 ] = 0;
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
}
makeRotationFromEuler( euler ) {
if ( ! ( euler && euler.isEuler ) ) {
console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
const te = this.elements;
const x = euler.x, y = euler.y, z = euler.z;
const a = Math.cos( x ), b = Math.sin( x );
const c = Math.cos( y ), d = Math.sin( y );
const e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// bottom row
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// last column
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
}
makeRotationFromQuaternion( q ) {
return this.compose( _zero, q, _one );
}
lookAt( eye, target, up ) {
const te = this.elements;
_z.subVectors( eye, target );
if ( _z.lengthSq() === 0 ) {
// eye and target are in the same position
_z.z = 1;
}
_z.normalize();
_x.crossVectors( up, _z );
if ( _x.lengthSq() === 0 ) {
// up and z are parallel
if ( Math.abs( up.z ) === 1 ) {
_z.x += 0.0001;
} else {
_z.z += 0.0001;
}
_z.normalize();
_x.crossVectors( up, _z );
}
_x.normalize();
_y.crossVectors( _z, _x );
te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;
return this;
}
multiply( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
}
transpose() {
const te = this.elements;
let tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
}
setPosition( x, y, z ) {
const te = this.elements;
if ( x.isVector3 ) {
te[ 12 ] = x.x;
te[ 13 ] = x.y;
te[ 14 ] = x.z;
} else {
te[ 12 ] = x;
te[ 13 ] = y;
te[ 14 ] = z;
}
return this;
}
invert() {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ],
n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ],
n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ],
n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
te[ 4 ] = t12 * detInv;
te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
te[ 8 ] = t13 * detInv;
te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
te[ 12 ] = t14 * detInv;
te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
return this;
}
scale( v ) {
const te = this.elements;
const x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
}
getMaxScaleOnAxis() {
const te = this.elements;
const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
}
makeTranslation( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
}
makeRotationX( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
}
makeRotationY( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
}
makeRotationZ( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
}
makeRotationAxis( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
const c = Math.cos( angle );
const s = Math.sin( angle );
const t = 1 - c;
const x = axis.x, y = axis.y, z = axis.z;
const tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
}
makeScale( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
}
makeShear( xy, xz, yx, yz, zx, zy ) {
this.set(
1, yx, zx, 0,
xy, 1, zy, 0,
xz, yz, 1, 0,
0, 0, 0, 1
);
return this;
}
compose( position, quaternion, scale ) {
const te = this.elements;
const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
const x2 = x + x, y2 = y + y, z2 = z + z;
const xx = x * x2, xy = x * y2, xz = x * z2;
const yy = y * y2, yz = y * z2, zz = z * z2;
const wx = w * x2, wy = w * y2, wz = w * z2;
const sx = scale.x, sy = scale.y, sz = scale.z;
te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
te[ 1 ] = ( xy + wz ) * sx;
te[ 2 ] = ( xz - wy ) * sx;
te[ 3 ] = 0;
te[ 4 ] = ( xy - wz ) * sy;
te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
te[ 6 ] = ( yz + wx ) * sy;
te[ 7 ] = 0;
te[ 8 ] = ( xz + wy ) * sz;
te[ 9 ] = ( yz - wx ) * sz;
te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
te[ 11 ] = 0;
te[ 12 ] = position.x;
te[ 13 ] = position.y;
te[ 14 ] = position.z;
te[ 15 ] = 1;
return this;
}
decompose( position, quaternion, scale ) {
const te = this.elements;
let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
const det = this.determinant();
if ( det < 0 ) sx = - sx;
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
_m1$2.copy( this );
const invSX = 1 / sx;
const invSY = 1 / sy;
const invSZ = 1 / sz;
_m1$2.elements[ 0 ] *= invSX;
_m1$2.elements[ 1 ] *= invSX;
_m1$2.elements[ 2 ] *= invSX;
_m1$2.elements[ 4 ] *= invSY;
_m1$2.elements[ 5 ] *= invSY;
_m1$2.elements[ 6 ] *= invSY;
_m1$2.elements[ 8 ] *= invSZ;
_m1$2.elements[ 9 ] *= invSZ;
_m1$2.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( _m1$2 );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
}
makePerspective( left, right, top, bottom, near, far ) {
if ( far === undefined ) {
console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
}
const te = this.elements;
const x = 2 * near / ( right - left );
const y = 2 * near / ( top - bottom );
const a = ( right + left ) / ( right - left );
const b = ( top + bottom ) / ( top - bottom );
const c = - ( far + near ) / ( far - near );
const d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
}
makeOrthographic( left, right, top, bottom, near, far ) {
const te = this.elements;
const w = 1.0 / ( right - left );
const h = 1.0 / ( top - bottom );
const p = 1.0 / ( far - near );
const x = ( right + left ) * w;
const y = ( top + bottom ) * h;
const z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
}
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 16; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
}
Matrix4.prototype.isMatrix4 = true;
const _v1$5 = /*@__PURE__*/ new Vector3();
const _m1$2 = /*@__PURE__*/ new Matrix4();
const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 );
const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 );
const _x = /*@__PURE__*/ new Vector3();
const _y = /*@__PURE__*/ new Vector3();
const _z = /*@__PURE__*/ new Vector3();
const _matrix$1 = /*@__PURE__*/ new Matrix4();
const _quaternion$3 = /*@__PURE__*/ new Quaternion();
class Euler {
constructor( x = 0, y = 0, z = 0, order = Euler.DefaultOrder ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order;
}
get x() {
return this._x;
}
set x( value ) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y( value ) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z( value ) {
this._z = value;
this._onChangeCallback();
}
get order() {
return this._order;
}
set order( value ) {
this._order = value;
this._onChangeCallback();
}
set( x, y, z, order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order || this._order;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor( this._x, this._y, this._z, this._order );
}
copy( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this._onChangeCallback();
return this;
}
setFromRotationMatrix( m, order, update ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements;
const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
order = order || this._order;
switch ( order ) {
case 'XYZ':
this._y = Math.asin( clamp( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
break;
case 'YXZ':
this._x = Math.asin( - clamp( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.9999999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
break;
case 'ZXY':
this._x = Math.asin( clamp( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.9999999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
break;
case 'ZYX':
this._y = Math.asin( - clamp( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
break;
case 'YZX':
this._z = Math.asin( clamp( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
break;
case 'XZY':
this._z = Math.asin( - clamp( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
break;
default:
console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order );
}
this._order = order;
if ( update !== false ) this._onChangeCallback();
return this;
}
setFromQuaternion( q, order, update ) {
_matrix$1.makeRotationFromQuaternion( q );
return this.setFromRotationMatrix( _matrix$1, order, update );
}
setFromVector3( v, order ) {
return this.set( v.x, v.y, v.z, order || this._order );
}
reorder( newOrder ) {
// WARNING: this discards revolution information -bhouston
_quaternion$3.setFromEuler( this );
return this.setFromQuaternion( _quaternion$3, newOrder );
}
equals( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
}
fromArray( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this._onChangeCallback();
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
}
toVector3( optionalResult ) {
if ( optionalResult ) {
return optionalResult.set( this._x, this._y, this._z );
} else {
return new Vector3( this._x, this._y, this._z );
}
}
_onChange( callback ) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
}
Euler.prototype.isEuler = true;
Euler.DefaultOrder = 'XYZ';
Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];
class Layers {
constructor() {
this.mask = 1 | 0;
}
set( channel ) {
this.mask = 1 << channel | 0;
}
enable( channel ) {
this.mask |= 1 << channel | 0;
}
enableAll() {
this.mask = 0xffffffff | 0;
}
toggle( channel ) {
this.mask ^= 1 << channel | 0;
}
disable( channel ) {
this.mask &= ~ ( 1 << channel | 0 );
}
disableAll() {
this.mask = 0;
}
test( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
}
let _object3DId = 0;
const _v1$4 = /*@__PURE__*/ new Vector3();
const _q1 = /*@__PURE__*/ new Quaternion();
const _m1$1 = /*@__PURE__*/ new Matrix4();
const _target = /*@__PURE__*/ new Vector3();
const _position$3 = /*@__PURE__*/ new Vector3();
const _scale$2 = /*@__PURE__*/ new Vector3();
const _quaternion$2 = /*@__PURE__*/ new Quaternion();
const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 );
const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 );
const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 );
const _addedEvent = { type: 'added' };
const _removedEvent = { type: 'removed' };
class Object3D extends EventDispatcher {
constructor() {
super();
Object.defineProperty( this, 'id', { value: _object3DId ++ } );
this.uuid = generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = Object3D.DefaultUp.clone();
const position = new Vector3();
const rotation = new Euler();
const quaternion = new Quaternion();
const scale = new Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation._onChange( onRotationChange );
quaternion._onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
configurable: true,
enumerable: true,
value: position
},
rotation: {
configurable: true,
enumerable: true,
value: rotation
},
quaternion: {
configurable: true,
enumerable: true,
value: quaternion
},
scale: {
configurable: true,
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
} );
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.animations = [];
this.userData = {};
}
onBeforeRender() {}
onAfterRender() {}
applyMatrix4( matrix ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
this.matrix.premultiply( matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
}
applyQuaternion( q ) {
this.quaternion.premultiply( q );
return this;
}
setRotationFromAxisAngle( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
}
setRotationFromEuler( euler ) {
this.quaternion.setFromEuler( euler, true );
}
setRotationFromMatrix( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
}
setRotationFromQuaternion( q ) {
// assumes q is normalized
this.quaternion.copy( q );
}
rotateOnAxis( axis, angle ) {
// rotate object on axis in object space
// axis is assumed to be normalized
_q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( _q1 );
return this;
}
rotateOnWorldAxis( axis, angle ) {
// rotate object on axis in world space
// axis is assumed to be normalized
// method assumes no rotated parent
_q1.setFromAxisAngle( axis, angle );
this.quaternion.premultiply( _q1 );
return this;
}
rotateX( angle ) {
return this.rotateOnAxis( _xAxis, angle );
}
rotateY( angle ) {
return this.rotateOnAxis( _yAxis, angle );
}
rotateZ( angle ) {
return this.rotateOnAxis( _zAxis, angle );
}
translateOnAxis( axis, distance ) {
// translate object by distance along axis in object space
// axis is assumed to be normalized
_v1$4.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( _v1$4.multiplyScalar( distance ) );
return this;
}
translateX( distance ) {
return this.translateOnAxis( _xAxis, distance );
}
translateY( distance ) {
return this.translateOnAxis( _yAxis, distance );
}
translateZ( distance ) {
return this.translateOnAxis( _zAxis, distance );
}
localToWorld( vector ) {
return vector.applyMatrix4( this.matrixWorld );
}
worldToLocal( vector ) {
return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() );
}
lookAt( x, y, z ) {
// This method does not support objects having non-uniformly-scaled parent(s)
if ( x.isVector3 ) {
_target.copy( x );
} else {
_target.set( x, y, z );
}
const parent = this.parent;
this.updateWorldMatrix( true, false );
_position$3.setFromMatrixPosition( this.matrixWorld );
if ( this.isCamera || this.isLight ) {
_m1$1.lookAt( _position$3, _target, this.up );
} else {
_m1$1.lookAt( _target, _position$3, this.up );
}
this.quaternion.setFromRotationMatrix( _m1$1 );
if ( parent ) {
_m1$1.extractRotation( parent.matrixWorld );
_q1.setFromRotationMatrix( _m1$1 );
this.quaternion.premultiply( _q1.invert() );
}
}
add( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object );
return this;
}
if ( object && object.isObject3D ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
this.children.push( object );
object.dispatchEvent( _addedEvent );
} else {
console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object );
}
return this;
}
remove( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
return this;
}
const index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
this.children.splice( index, 1 );
object.dispatchEvent( _removedEvent );
}
return this;
}
removeFromParent() {
const parent = this.parent;
if ( parent !== null ) {
parent.remove( this );
}
return this;
}
clear() {
for ( let i = 0; i < this.children.length; i ++ ) {
const object = this.children[ i ];
object.parent = null;
object.dispatchEvent( _removedEvent );
}
this.children.length = 0;
return this;
}
attach( object ) {
// adds object as a child of this, while maintaining the object's world transform
this.updateWorldMatrix( true, false );
_m1$1.copy( this.matrixWorld ).invert();
if ( object.parent !== null ) {
object.parent.updateWorldMatrix( true, false );
_m1$1.multiply( object.parent.matrixWorld );
}
object.applyMatrix4( _m1$1 );
this.add( object );
object.updateWorldMatrix( false, true );
return this;
}
getObjectById( id ) {
return this.getObjectByProperty( 'id', id );
}
getObjectByName( name ) {
return this.getObjectByProperty( 'name', name );
}
getObjectByProperty( name, value ) {
if ( this[ name ] === value ) return this;
for ( let i = 0, l = this.children.length; i < l; i ++ ) {
const child = this.children[ i ];
const object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
}
getWorldPosition( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' );
target = new Vector3();
}
this.updateWorldMatrix( true, false );
return target.setFromMatrixPosition( this.matrixWorld );
}
getWorldQuaternion( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' );
target = new Quaternion();
}
this.updateWorldMatrix( true, false );
this.matrixWorld.decompose( _position$3, target, _scale$2 );
return target;
}
getWorldScale( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldScale() target is now required' );
target = new Vector3();
}
this.updateWorldMatrix( true, false );
this.matrixWorld.decompose( _position$3, _quaternion$2, target );
return target;
}
getWorldDirection( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' );
target = new Vector3();
}
this.updateWorldMatrix( true, false );
const e = this.matrixWorld.elements;
return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();
}
raycast() {}
traverse( callback ) {
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
}
traverseVisible( callback ) {
if ( this.visible === false ) return;
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
}
traverseAncestors( callback ) {
const parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
}
updateMatrix() {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
}
updateMatrixWorld( force ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateMatrixWorld( force );
}
}
updateWorldMatrix( updateParents, updateChildren ) {
const parent = this.parent;
if ( updateParents === true && parent !== null ) {
parent.updateWorldMatrix( true, false );
}
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
// update children
if ( updateChildren === true ) {
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].updateWorldMatrix( false, true );
}
}
}
toJSON( meta ) {
// meta is a string when called from JSON.stringify
const isRootObject = ( meta === undefined || typeof meta === 'string' );
const output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {},
shapes: {},
skeletons: {},
animations: {}
};
output.metadata = {
version: 4.5,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
const object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
if ( this.frustumCulled === false ) object.frustumCulled = false;
if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder;
if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;
object.layers = this.layers.mask;
object.matrix = this.matrix.toArray();
if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;
// object specific properties
if ( this.isInstancedMesh ) {
object.type = 'InstancedMesh';
object.count = this.count;
object.instanceMatrix = this.instanceMatrix.toJSON();
if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON();
}
//
function serialize( library, element ) {
if ( library[ element.uuid ] === undefined ) {
library[ element.uuid ] = element.toJSON( meta );
}
return element.uuid;
}
if ( this.isMesh || this.isLine || this.isPoints ) {
object.geometry = serialize( meta.geometries, this.geometry );
const parameters = this.geometry.parameters;
if ( parameters !== undefined && parameters.shapes !== undefined ) {
const shapes = parameters.shapes;
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
serialize( meta.shapes, shape );
}
} else {
serialize( meta.shapes, shapes );
}
}
}
if ( this.isSkinnedMesh ) {
object.bindMode = this.bindMode;
object.bindMatrix = this.bindMatrix.toArray();
if ( this.skeleton !== undefined ) {
serialize( meta.skeletons, this.skeleton );
object.skeleton = this.skeleton.uuid;
}
}
if ( this.material !== undefined ) {
if ( Array.isArray( this.material ) ) {
const uuids = [];
for ( let i = 0, l = this.material.length; i < l; i ++ ) {
uuids.push( serialize( meta.materials, this.material[ i ] ) );
}
object.material = uuids;
} else {
object.material = serialize( meta.materials, this.material );
}
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( let i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
//
if ( this.animations.length > 0 ) {
object.animations = [];
for ( let i = 0; i < this.animations.length; i ++ ) {
const animation = this.animations[ i ];
object.animations.push( serialize( meta.animations, animation ) );
}
}
if ( isRootObject ) {
const geometries = extractFromCache( meta.geometries );
const materials = extractFromCache( meta.materials );
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const shapes = extractFromCache( meta.shapes );
const skeletons = extractFromCache( meta.skeletons );
const animations = extractFromCache( meta.animations );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
if ( shapes.length > 0 ) output.shapes = shapes;
if ( skeletons.length > 0 ) output.skeletons = skeletons;
if ( animations.length > 0 ) output.animations = animations;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
}
clone( recursive ) {
return new this.constructor().copy( this, recursive );
}
copy( source, recursive = true ) {
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.rotation.order = source.rotation.order;
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( let i = 0; i < source.children.length; i ++ ) {
const child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
}
Object3D.DefaultUp = new Vector3( 0, 1, 0 );
Object3D.DefaultMatrixAutoUpdate = true;
Object3D.prototype.isObject3D = true;
const _vector1 = /*@__PURE__*/ new Vector3();
const _vector2$1 = /*@__PURE__*/ new Vector3();
const _normalMatrix = /*@__PURE__*/ new Matrix3();
class Plane {
constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) {
// normal is assumed to be normalized
this.normal = normal;
this.constant = constant;
}
set( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
}
setComponents( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
}
setFromNormalAndCoplanarPoint( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal );
return this;
}
setFromCoplanarPoints( a, b, c ) {
const normal = _vector1.subVectors( c, b ).cross( _vector2$1.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
}
copy( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
}
normalize() {
// Note: will lead to a divide by zero if the plane is invalid.
const inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
}
negate() {
this.constant *= - 1;
this.normal.negate();
return this;
}
distanceToPoint( point ) {
return this.normal.dot( point ) + this.constant;
}
distanceToSphere( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
}
projectPoint( point, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Plane: .projectPoint() target is now required' );
target = new Vector3();
}
return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );
}
intersectLine( line, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Plane: .intersectLine() target is now required' );
target = new Vector3();
}
const direction = line.delta( _vector1 );
const denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return target.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return null;
}
const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return null;
}
return target.copy( direction ).multiplyScalar( t ).add( line.start );
}
intersectsLine( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
const startSign = this.distanceToPoint( line.start );
const endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
}
intersectsBox( box ) {
return box.intersectsPlane( this );
}
intersectsSphere( sphere ) {
return sphere.intersectsPlane( this );
}
coplanarPoint( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Plane: .coplanarPoint() target is now required' );
target = new Vector3();
}
return target.copy( this.normal ).multiplyScalar( - this.constant );
}
applyMatrix4( matrix, optionalNormalMatrix ) {
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );
const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );
const normal = this.normal.applyMatrix3( normalMatrix ).normalize();
this.constant = - referencePoint.dot( normal );
return this;
}
translate( offset ) {
this.constant -= offset.dot( this.normal );
return this;
}
equals( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
clone() {
return new this.constructor().copy( this );
}
}
Plane.prototype.isPlane = true;
const _v0$1 = /*@__PURE__*/ new Vector3();
const _v1$3 = /*@__PURE__*/ new Vector3();
const _v2$2 = /*@__PURE__*/ new Vector3();
const _v3$1 = /*@__PURE__*/ new Vector3();
const _vab = /*@__PURE__*/ new Vector3();
const _vac = /*@__PURE__*/ new Vector3();
const _vbc = /*@__PURE__*/ new Vector3();
const _vap = /*@__PURE__*/ new Vector3();
const _vbp = /*@__PURE__*/ new Vector3();
const _vcp = /*@__PURE__*/ new Vector3();
class Triangle {
constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) {
this.a = a;
this.b = b;
this.c = c;
}
static getNormal( a, b, c, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getNormal() target is now required' );
target = new Vector3();
}
target.subVectors( c, b );
_v0$1.subVectors( a, b );
target.cross( _v0$1 );
const targetLengthSq = target.lengthSq();
if ( targetLengthSq > 0 ) {
return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
}
return target.set( 0, 0, 0 );
}
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
static getBarycoord( point, a, b, c, target ) {
_v0$1.subVectors( c, a );
_v1$3.subVectors( b, a );
_v2$2.subVectors( point, a );
const dot00 = _v0$1.dot( _v0$1 );
const dot01 = _v0$1.dot( _v1$3 );
const dot02 = _v0$1.dot( _v2$2 );
const dot11 = _v1$3.dot( _v1$3 );
const dot12 = _v1$3.dot( _v2$2 );
const denom = ( dot00 * dot11 - dot01 * dot01 );
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getBarycoord() target is now required' );
target = new Vector3();
}
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return target.set( - 2, - 1, - 1 );
}
const invDenom = 1 / denom;
const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return target.set( 1 - u - v, v, u );
}
static containsPoint( point, a, b, c ) {
this.getBarycoord( point, a, b, c, _v3$1 );
return ( _v3$1.x >= 0 ) && ( _v3$1.y >= 0 ) && ( ( _v3$1.x + _v3$1.y ) <= 1 );
}
static getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) {
this.getBarycoord( point, p1, p2, p3, _v3$1 );
target.set( 0, 0 );
target.addScaledVector( uv1, _v3$1.x );
target.addScaledVector( uv2, _v3$1.y );
target.addScaledVector( uv3, _v3$1.z );
return target;
}
static isFrontFacing( a, b, c, direction ) {
_v0$1.subVectors( c, b );
_v1$3.subVectors( a, b );
// strictly front facing
return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;
}
set( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
}
setFromPointsAndIndices( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
}
clone() {
return new this.constructor().copy( this );
}
copy( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
}
getArea() {
_v0$1.subVectors( this.c, this.b );
_v1$3.subVectors( this.a, this.b );
return _v0$1.cross( _v1$3 ).length() * 0.5;
}
getMidpoint( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getMidpoint() target is now required' );
target = new Vector3();
}
return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
}
getNormal( target ) {
return Triangle.getNormal( this.a, this.b, this.c, target );
}
getPlane( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .getPlane() target is now required' );
target = new Plane();
}
return target.setFromCoplanarPoints( this.a, this.b, this.c );
}
getBarycoord( point, target ) {
return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
}
getUV( point, uv1, uv2, uv3, target ) {
return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );
}
containsPoint( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
}
isFrontFacing( direction ) {
return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
}
intersectsBox( box ) {
return box.intersectsTriangle( this );
}
closestPointToPoint( p, target ) {
if ( target === undefined ) {
console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' );
target = new Vector3();
}
const a = this.a, b = this.b, c = this.c;
let v, w;
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors( b, a );
_vac.subVectors( c, a );
_vap.subVectors( p, a );
const d1 = _vab.dot( _vap );
const d2 = _vac.dot( _vap );
if ( d1 <= 0 && d2 <= 0 ) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy( a );
}
_vbp.subVectors( p, b );
const d3 = _vab.dot( _vbp );
const d4 = _vac.dot( _vbp );
if ( d3 >= 0 && d4 <= d3 ) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy( b );
}
const vc = d1 * d4 - d3 * d2;
if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
v = d1 / ( d1 - d3 );
// edge region of AB; barycentric coords (1-v, v, 0)
return target.copy( a ).addScaledVector( _vab, v );
}
_vcp.subVectors( p, c );
const d5 = _vab.dot( _vcp );
const d6 = _vac.dot( _vcp );
if ( d6 >= 0 && d5 <= d6 ) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy( c );
}
const vb = d5 * d2 - d1 * d6;
if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
w = d2 / ( d2 - d6 );
// edge region of AC; barycentric coords (1-w, 0, w)
return target.copy( a ).addScaledVector( _vac, w );
}
const va = d3 * d6 - d5 * d4;
if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
_vbc.subVectors( c, b );
w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
// edge region of BC; barycentric coords (0, 1-w, w)
return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
}
// face region
const denom = 1 / ( va + vb + vc );
// u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
}
equals( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
}
let materialId = 0;
class Material extends EventDispatcher {
constructor() {
super();
Object.defineProperty( this, 'id', { value: materialId ++ } );
this.uuid = generateUUID();
this.name = '';
this.type = 'Material';
this.fog = true;
this.blending = NormalBlending;
this.side = FrontSide;
this.vertexColors = false;
this.opacity = 1;
this.transparent = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.stencilWriteMask = 0xff;
this.stencilFunc = AlwaysStencilFunc;
this.stencilRef = 0;
this.stencilFuncMask = 0xff;
this.stencilFail = KeepStencilOp;
this.stencilZFail = KeepStencilOp;
this.stencilZPass = KeepStencilOp;
this.stencilWrite = false;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.shadowSide = null;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaTest = 0;
this.alphaToCoverage = false;
this.premultipliedAlpha = false;
this.visible = true;
this.toneMapped = true;
this.userData = {};
this.version = 0;
}
onBuild( /* shaderobject, renderer */ ) {}
onBeforeCompile( /* shaderobject, renderer */ ) {}
customProgramCacheKey() {
return this.onBeforeCompile.toString();
}
setValues( values ) {
if ( values === undefined ) return;
for ( const key in values ) {
const newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( 'THREE.Material: \'' + key + '\' parameter is undefined.' );
continue;
}
// for backward compatability if shading is set in the constructor
if ( key === 'shading' ) {
console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
this.flatShading = ( newValue === FlatShading ) ? true : false;
continue;
}
const currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( 'THREE.' + this.type + ': \'' + key + '\' is not a property of this material.' );
continue;
}
if ( currentValue && currentValue.isColor ) {
currentValue.set( newValue );
} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
currentValue.copy( newValue );
} else {
this[ key ] = newValue;
}
}
}
toJSON( meta ) {
const isRoot = ( meta === undefined || typeof meta === 'string' );
if ( isRoot ) {
meta = {
textures: {},
images: {}
};
}
const data = {
metadata: {
version: 4.5,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color && this.color.isColor ) data.color = this.color.getHex();
if ( this.roughness !== undefined ) data.roughness = this.roughness;
if ( this.metalness !== undefined ) data.metalness = this.metalness;
if ( this.sheen && this.sheen.isColor ) data.sheen = this.sheen.getHex();
if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;
if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat;
if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness;
if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {
data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;
}
if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;
}
if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
}
if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid;
if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap && this.lightMap.isTexture ) {
data.lightMap = this.lightMap.toJSON( meta ).uuid;
data.lightMapIntensity = this.lightMapIntensity;
}
if ( this.aoMap && this.aoMap.isTexture ) {
data.aoMap = this.aoMap.toJSON( meta ).uuid;
data.aoMapIntensity = this.aoMapIntensity;
}
if ( this.bumpMap && this.bumpMap.isTexture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap && this.normalMap.isTexture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalMapType = this.normalMapType;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap && this.displacementMap.isTexture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.envMap && this.envMap.isTexture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
if ( this.combine !== undefined ) data.combine = this.combine;
}
if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity;
if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity;
if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio;
if ( this.gradientMap && this.gradientMap.isTexture ) {
data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
}
if ( this.transmission !== undefined ) data.transmission = this.transmission;
if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid;
if ( this.thickness !== undefined ) data.thickness = this.thickness;
if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid;
if ( this.attenuationDistance !== undefined ) data.attenuationDistance = this.attenuationDistance;
if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex();
if ( this.size !== undefined ) data.size = this.size;
if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.blending !== NormalBlending ) data.blending = this.blending;
if ( this.side !== FrontSide ) data.side = this.side;
if ( this.vertexColors ) data.vertexColors = true;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
data.depthFunc = this.depthFunc;
data.depthTest = this.depthTest;
data.depthWrite = this.depthWrite;
data.colorWrite = this.colorWrite;
data.stencilWrite = this.stencilWrite;
data.stencilWriteMask = this.stencilWriteMask;
data.stencilFunc = this.stencilFunc;
data.stencilRef = this.stencilRef;
data.stencilFuncMask = this.stencilFuncMask;
data.stencilFail = this.stencilFail;
data.stencilZFail = this.stencilZFail;
data.stencilZPass = this.stencilZPass;
// rotation (SpriteMaterial)
if ( this.rotation && this.rotation !== 0 ) data.rotation = this.rotation;
if ( this.polygonOffset === true ) data.polygonOffset = true;
if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor;
if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits;
if ( this.linewidth && this.linewidth !== 1 ) data.linewidth = this.linewidth;
if ( this.dashSize !== undefined ) data.dashSize = this.dashSize;
if ( this.gapSize !== undefined ) data.gapSize = this.gapSize;
if ( this.scale !== undefined ) data.scale = this.scale;
if ( this.dithering === true ) data.dithering = true;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.alphaToCoverage === true ) data.alphaToCoverage = this.alphaToCoverage;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;
if ( this.morphTargets === true ) data.morphTargets = true;
if ( this.morphNormals === true ) data.morphNormals = true;
if ( this.flatShading === true ) data.flatShading = this.flatShading;
if ( this.visible === false ) data.visible = false;
if ( this.toneMapped === false ) data.toneMapped = false;
if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData;
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.fog = source.fog;
this.blending = source.blending;
this.side = source.side;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.stencilWriteMask = source.stencilWriteMask;
this.stencilFunc = source.stencilFunc;
this.stencilRef = source.stencilRef;
this.stencilFuncMask = source.stencilFuncMask;
this.stencilFail = source.stencilFail;
this.stencilZFail = source.stencilZFail;
this.stencilZPass = source.stencilZPass;
this.stencilWrite = source.stencilWrite;
const srcPlanes = source.clippingPlanes;
let dstPlanes = null;
if ( srcPlanes !== null ) {
const n = srcPlanes.length;
dstPlanes = new Array( n );
for ( let i = 0; i !== n; ++ i ) {
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
}
this.clippingPlanes = dstPlanes;
this.clipIntersection = source.clipIntersection;
this.clipShadows = source.clipShadows;
this.shadowSide = source.shadowSide;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.alphaToCoverage = source.alphaToCoverage;
this.premultipliedAlpha = source.premultipliedAlpha;
this.visible = source.visible;
this.toneMapped = source.toneMapped;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
}
Material.prototype.isMaterial = true;
const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
const _hslA = { h: 0, s: 0, l: 0 };
const _hslB = { h: 0, s: 0, l: 0 };
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
function SRGBToLinear( c ) {
return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
}
function LinearToSRGB( c ) {
return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;
}
class Color {
constructor( r, g, b ) {
if ( g === undefined && b === undefined ) {
// r is THREE.Color, hex or string
return this.set( r );
}
return this.setRGB( r, g, b );
}
set( value ) {
if ( value && value.isColor ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
return this;
}
setScalar( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
}
setHex( hex ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
return this;
}
setRGB( r, g, b ) {
this.r = r;
this.g = g;
this.b = b;
return this;
}
setHSL( h, s, l ) {
// h,s,l ranges are in 0.0 - 1.0
h = euclideanModulo( h, 1 );
s = clamp( s, 0, 1 );
l = clamp( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
const q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
return this;
}
setStyle( style ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
let m;
if ( m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
let color;
const name = m[ 1 ];
const components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;
handleAlpha( color[ 4 ] );
return this;
}
if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;
handleAlpha( color[ 4 ] );
return this;
}
break;
case 'hsl':
case 'hsla':
if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
const h = parseFloat( color[ 1 ] ) / 360;
const s = parseInt( color[ 2 ], 10 ) / 100;
const l = parseInt( color[ 3 ], 10 ) / 100;
handleAlpha( color[ 4 ] );
return this.setHSL( h, s, l );
}
break;
}
} else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) {
// hex color
const hex = m[ 1 ];
const size = hex.length;
if ( size === 3 ) {
// #ff0
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;
return this;
} else if ( size === 6 ) {
// #ff0000
this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;
return this;
}
}
if ( style && style.length > 0 ) {
return this.setColorName( style );
}
return this;
}
setColorName( style ) {
// color keywords
const hex = _colorKeywords[ style.toLowerCase() ];
if ( hex !== undefined ) {
// red
this.setHex( hex );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
return this;
}
clone() {
return new this.constructor( this.r, this.g, this.b );
}
copy( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
}
copyGammaToLinear( color, gammaFactor = 2.0 ) {
this.r = Math.pow( color.r, gammaFactor );
this.g = Math.pow( color.g, gammaFactor );
this.b = Math.pow( color.b, gammaFactor );
return this;
}
copyLinearToGamma( color, gammaFactor = 2.0 ) {
const safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;
this.r = Math.pow( color.r, safeInverse );
this.g = Math.pow( color.g, safeInverse );
this.b = Math.pow( color.b, safeInverse );
return this;
}
convertGammaToLinear( gammaFactor ) {
this.copyGammaToLinear( this, gammaFactor );
return this;
}
convertLinearToGamma( gammaFactor ) {
this.copyLinearToGamma( this, gammaFactor );
return this;
}
copySRGBToLinear( color ) {
this.r = SRGBToLinear( color.r );
this.g = SRGBToLinear( color.g );
this.b = SRGBToLinear( color.b );
return this;
}
copyLinearToSRGB( color ) {
this.r = LinearToSRGB( color.r );
this.g = LinearToSRGB( color.g );
this.b = LinearToSRGB( color.b );
return this;
}
convertSRGBToLinear() {
this.copySRGBToLinear( this );
return this;
}
convertLinearToSRGB() {
this.copyLinearToSRGB( this );
return this;
}
getHex() {
return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;
}
getHexString() {
return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );
}
getHSL( target ) {
// h,s,l ranges are in 0.0 - 1.0
if ( target === undefined ) {
console.warn( 'THREE.Color: .getHSL() target is now required' );
target = { h: 0, s: 0, l: 0 };
}
const r = this.r, g = this.g, b = this.b;
const max = Math.max( r, g, b );
const min = Math.min( r, g, b );
let hue, saturation;
const lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
const delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
target.h = hue;
target.s = saturation;
target.l = lightness;
return target;
}
getStyle() {
return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';
}
offsetHSL( h, s, l ) {
this.getHSL( _hslA );
_hslA.h += h; _hslA.s += s; _hslA.l += l;
this.setHSL( _hslA.h, _hslA.s, _hslA.l );
return this;
}
add( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
}
addColors( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
}
addScalar( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
}
sub( color ) {
this.r = Math.max( 0, this.r - color.r );
this.g = Math.max( 0, this.g - color.g );
this.b = Math.max( 0, this.b - color.b );
return this;
}
multiply( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
}
multiplyScalar( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
}
lerp( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
}
lerpColors( color1, color2, alpha ) {
this.r = color1.r + ( color2.r - color1.r ) * alpha;
this.g = color1.g + ( color2.g - color1.g ) * alpha;
this.b = color1.b + ( color2.b - color1.b ) * alpha;
return this;
}
lerpHSL( color, alpha ) {
this.getHSL( _hslA );
color.getHSL( _hslB );
const h = lerp( _hslA.h, _hslB.h, alpha );
const s = lerp( _hslA.s, _hslB.s, alpha );
const l = lerp( _hslA.l, _hslB.l, alpha );
this.setHSL( h, s, l );
return this;
}
equals( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
}
fromArray( array, offset = 0 ) {
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
}
fromBufferAttribute( attribute, index ) {
this.r = attribute.getX( index );
this.g = attribute.getY( index );
this.b = attribute.getZ( index );
if ( attribute.normalized === true ) {
// assuming Uint8Array
this.r /= 255;
this.g /= 255;
this.b /= 255;
}
return this;
}
toJSON() {
return this.getHex();
}
}
Color.NAMES = _colorKeywords;
Color.prototype.isColor = true;
Color.prototype.r = 1;
Color.prototype.g = 1;
Color.prototype.b = 1;
/**
* parameters = {
* color: ,
* opacity: ,
* map: new THREE.Texture( ),
*
* lightMap: new THREE.Texture( ),
* lightMapIntensity:
*
* aoMap: new THREE.Texture( ),
* aoMapIntensity:
*
* specularMap: new THREE.Texture( ),
*
* alphaMap: new THREE.Texture( ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: ,
* refractionRatio: ,
*
* depthTest: ,
* depthWrite: ,
*
* wireframe: ,
* wireframeLinewidth: ,
*
* morphTargets:
* }
*/
class MeshBasicMaterial extends Material {
constructor( parameters ) {
super();
this.type = 'MeshBasicMaterial';
this.color = new Color( 0xffffff ); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.morphTargets = false;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.morphTargets = source.morphTargets;
return this;
}
}
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
const _vector$9 = /*@__PURE__*/ new Vector3();
const _vector2 = /*@__PURE__*/ new Vector2();
class BufferAttribute {
constructor( array, itemSize, normalized ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.name = '';
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized === true;
this.usage = StaticDrawUsage;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
}
onUploadCallback() {}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
setUsage( value ) {
this.usage = value;
return this;
}
copy( source ) {
this.name = source.name;
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.usage = source.usage;
return this;
}
copyAt( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( let i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
}
copyArray( array ) {
this.array.set( array );
return this;
}
copyColorsArray( colors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = colors.length; i < l; i ++ ) {
let color = colors[ i ];
if ( color === undefined ) {
console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
color = new Color();
}
array[ offset ++ ] = color.r;
array[ offset ++ ] = color.g;
array[ offset ++ ] = color.b;
}
return this;
}
copyVector2sArray( vectors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = vectors.length; i < l; i ++ ) {
let vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
vector = new Vector2();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
}
return this;
}
copyVector3sArray( vectors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = vectors.length; i < l; i ++ ) {
let vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
vector = new Vector3();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
}
return this;
}
copyVector4sArray( vectors ) {
const array = this.array;
let offset = 0;
for ( let i = 0, l = vectors.length; i < l; i ++ ) {
let vector = vectors[ i ];
if ( vector === undefined ) {
console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
vector = new Vector4();
}
array[ offset ++ ] = vector.x;
array[ offset ++ ] = vector.y;
array[ offset ++ ] = vector.z;
array[ offset ++ ] = vector.w;
}
return this;
}
applyMatrix3( m ) {
if ( this.itemSize === 2 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector2.fromBufferAttribute( this, i );
_vector2.applyMatrix3( m );
this.setXY( i, _vector2.x, _vector2.y );
}
} else if ( this.itemSize === 3 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.fromBufferAttribute( this, i );
_vector$9.applyMatrix3( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
}
return this;
}
applyMatrix4( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.x = this.getX( i );
_vector$9.y = this.getY( i );
_vector$9.z = this.getZ( i );
_vector$9.applyMatrix4( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
return this;
}
applyNormalMatrix( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.x = this.getX( i );
_vector$9.y = this.getY( i );
_vector$9.z = this.getZ( i );
_vector$9.applyNormalMatrix( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
return this;
}
transformDirection( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.x = this.getX( i );
_vector$9.y = this.getY( i );
_vector$9.z = this.getZ( i );
_vector$9.transformDirection( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
return this;
}
set( value, offset = 0 ) {
this.array.set( value, offset );
return this;
}
getX( index ) {
return this.array[ index * this.itemSize ];
}
setX( index, x ) {
this.array[ index * this.itemSize ] = x;
return this;
}
getY( index ) {
return this.array[ index * this.itemSize + 1 ];
}
setY( index, y ) {
this.array[ index * this.itemSize + 1 ] = y;
return this;
}
getZ( index ) {
return this.array[ index * this.itemSize + 2 ];
}
setZ( index, z ) {
this.array[ index * this.itemSize + 2 ] = z;
return this;
}
getW( index ) {
return this.array[ index * this.itemSize + 3 ];
}
setW( index, w ) {
this.array[ index * this.itemSize + 3 ] = w;
return this;
}
setXY( index, x, y ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
}
setXYZ( index, x, y, z ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
}
setXYZW( index, x, y, z, w ) {
index *= this.itemSize;
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
}
onUpload( callback ) {
this.onUploadCallback = callback;
return this;
}
clone() {
return new this.constructor( this.array, this.itemSize ).copy( this );
}
toJSON() {
const data = {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: Array.prototype.slice.call( this.array ),
normalized: this.normalized
};
if ( this.name !== '' ) data.name = this.name;
if ( this.usage !== StaticDrawUsage ) data.usage = this.usage;
if ( this.updateRange.offset !== 0 || this.updateRange.count !== - 1 ) data.updateRange = this.updateRange;
return data;
}
}
BufferAttribute.prototype.isBufferAttribute = true;
//
class Int8BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Int8Array( array ), itemSize, normalized );
}
}
class Uint8BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint8Array( array ), itemSize, normalized );
}
}
class Uint8ClampedBufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint8ClampedArray( array ), itemSize, normalized );
}
}
class Int16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Int16Array( array ), itemSize, normalized );
}
}
class Uint16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint16Array( array ), itemSize, normalized );
}
}
class Int32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Int32Array( array ), itemSize, normalized );
}
}
class Uint32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint32Array( array ), itemSize, normalized );
}
}
class Float16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint16Array( array ), itemSize, normalized );
}
}
Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
class Float32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Float32Array( array ), itemSize, normalized );
}
}
class Float64BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Float64Array( array ), itemSize, normalized );
}
}
function arrayMax( array ) {
if ( array.length === 0 ) return - Infinity;
let max = array[ 0 ];
for ( let i = 1, l = array.length; i < l; ++ i ) {
if ( array[ i ] > max ) max = array[ i ];
}
return max;
}
const TYPED_ARRAYS = {
Int8Array: Int8Array,
Uint8Array: Uint8Array,
Uint8ClampedArray: Uint8ClampedArray,
Int16Array: Int16Array,
Uint16Array: Uint16Array,
Int32Array: Int32Array,
Uint32Array: Uint32Array,
Float32Array: Float32Array,
Float64Array: Float64Array
};
function getTypedArray( type, buffer ) {
return new TYPED_ARRAYS[ type ]( buffer );
}
let _id = 0;
const _m1 = /*@__PURE__*/ new Matrix4();
const _obj = /*@__PURE__*/ new Object3D();
const _offset = /*@__PURE__*/ new Vector3();
const _box$1 = /*@__PURE__*/ new Box3();
const _boxMorphTargets = /*@__PURE__*/ new Box3();
const _vector$8 = /*@__PURE__*/ new Vector3();
class BufferGeometry extends EventDispatcher {
constructor() {
super();
Object.defineProperty( this, 'id', { value: _id ++ } );
this.uuid = generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.morphTargetsRelative = false;
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
this.userData = {};
}
getIndex() {
return this.index;
}
setIndex( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
return this;
}
getAttribute( name ) {
return this.attributes[ name ];
}
setAttribute( name, attribute ) {
this.attributes[ name ] = attribute;
return this;
}
deleteAttribute( name ) {
delete this.attributes[ name ];
return this;
}
hasAttribute( name ) {
return this.attributes[ name ] !== undefined;
}
addGroup( start, count, materialIndex = 0 ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex
} );
}
clearGroups() {
this.groups = [];
}
setDrawRange( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
}
applyMatrix4( matrix ) {
const position = this.attributes.position;
if ( position !== undefined ) {
position.applyMatrix4( matrix );
position.needsUpdate = true;
}
const normal = this.attributes.normal;
if ( normal !== undefined ) {
const normalMatrix = new Matrix3().getNormalMatrix( matrix );
normal.applyNormalMatrix( normalMatrix );
normal.needsUpdate = true;
}
const tangent = this.attributes.tangent;
if ( tangent !== undefined ) {
tangent.transformDirection( matrix );
tangent.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
}
applyQuaternion( q ) {
_m1.makeRotationFromQuaternion( q );
this.applyMatrix4( _m1 );
return this;
}
rotateX( angle ) {
// rotate geometry around world x-axis
_m1.makeRotationX( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateY( angle ) {
// rotate geometry around world y-axis
_m1.makeRotationY( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateZ( angle ) {
// rotate geometry around world z-axis
_m1.makeRotationZ( angle );
this.applyMatrix4( _m1 );
return this;
}
translate( x, y, z ) {
// translate geometry
_m1.makeTranslation( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
scale( x, y, z ) {
// scale geometry
_m1.makeScale( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
lookAt( vector ) {
_obj.lookAt( vector );
_obj.updateMatrix();
this.applyMatrix4( _obj.matrix );
return this;
}
center() {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset ).negate();
this.translate( _offset.x, _offset.y, _offset.z );
return this;
}
setFromPoints( points ) {
const position = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
position.push( point.x, point.y, point.z || 0 );
}
this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );
return this;
}
computeBoundingBox() {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this );
this.boundingBox.set(
new Vector3( - Infinity, - Infinity, - Infinity ),
new Vector3( + Infinity, + Infinity, + Infinity )
);
return;
}
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_box$1.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$8.addVectors( this.boundingBox.min, _box$1.min );
this.boundingBox.expandByPoint( _vector$8 );
_vector$8.addVectors( this.boundingBox.max, _box$1.max );
this.boundingBox.expandByPoint( _vector$8 );
} else {
this.boundingBox.expandByPoint( _box$1.min );
this.boundingBox.expandByPoint( _box$1.max );
}
}
}
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
}
computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this );
this.boundingSphere.set( new Vector3(), Infinity );
return;
}
if ( position ) {
// first, find the center of the bounding sphere
const center = this.boundingSphere.center;
_box$1.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_boxMorphTargets.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$8.addVectors( _box$1.min, _boxMorphTargets.min );
_box$1.expandByPoint( _vector$8 );
_vector$8.addVectors( _box$1.max, _boxMorphTargets.max );
_box$1.expandByPoint( _vector$8 );
} else {
_box$1.expandByPoint( _boxMorphTargets.min );
_box$1.expandByPoint( _boxMorphTargets.max );
}
}
}
_box$1.getCenter( center );
// second, try to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
let maxRadiusSq = 0;
for ( let i = 0, il = position.count; i < il; i ++ ) {
_vector$8.fromBufferAttribute( position, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) );
}
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
const morphTargetsRelative = this.morphTargetsRelative;
for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) {
_vector$8.fromBufferAttribute( morphAttribute, j );
if ( morphTargetsRelative ) {
_offset.fromBufferAttribute( position, j );
_vector$8.add( _offset );
}
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) );
}
}
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
}
computeFaceNormals() {
// backwards compatibility
}
computeTangents() {
const index = this.index;
const attributes = this.attributes;
// based on http://www.terathon.com/code/tangent.html
// (per vertex tangents)
if ( index === null ||
attributes.position === undefined ||
attributes.normal === undefined ||
attributes.uv === undefined ) {
console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' );
return;
}
const indices = index.array;
const positions = attributes.position.array;
const normals = attributes.normal.array;
const uvs = attributes.uv.array;
const nVertices = positions.length / 3;
if ( attributes.tangent === undefined ) {
this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * nVertices ), 4 ) );
}
const tangents = attributes.tangent.array;
const tan1 = [], tan2 = [];
for ( let i = 0; i < nVertices; i ++ ) {
tan1[ i ] = new Vector3();
tan2[ i ] = new Vector3();
}
const vA = new Vector3(),
vB = new Vector3(),
vC = new Vector3(),
uvA = new Vector2(),
uvB = new Vector2(),
uvC = new Vector2(),
sdir = new Vector3(),
tdir = new Vector3();
function handleTriangle( a, b, c ) {
vA.fromArray( positions, a * 3 );
vB.fromArray( positions, b * 3 );
vC.fromArray( positions, c * 3 );
uvA.fromArray( uvs, a * 2 );
uvB.fromArray( uvs, b * 2 );
uvC.fromArray( uvs, c * 2 );
vB.sub( vA );
vC.sub( vA );
uvB.sub( uvA );
uvC.sub( uvA );
const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y );
// silently ignore degenerate uv triangles having coincident or colinear vertices
if ( ! isFinite( r ) ) return;
sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r );
tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r );
tan1[ a ].add( sdir );
tan1[ b ].add( sdir );
tan1[ c ].add( sdir );
tan2[ a ].add( tdir );
tan2[ b ].add( tdir );
tan2[ c ].add( tdir );
}
let groups = this.groups;
if ( groups.length === 0 ) {
groups = [ {
start: 0,
count: indices.length
} ];
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleTriangle(
indices[ j + 0 ],
indices[ j + 1 ],
indices[ j + 2 ]
);
}
}
const tmp = new Vector3(), tmp2 = new Vector3();
const n = new Vector3(), n2 = new Vector3();
function handleVertex( v ) {
n.fromArray( normals, v * 3 );
n2.copy( n );
const t = tan1[ v ];
// Gram-Schmidt orthogonalize
tmp.copy( t );
tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize();
// Calculate handedness
tmp2.crossVectors( n2, t );
const test = tmp2.dot( tan2[ v ] );
const w = ( test < 0.0 ) ? - 1.0 : 1.0;
tangents[ v * 4 ] = tmp.x;
tangents[ v * 4 + 1 ] = tmp.y;
tangents[ v * 4 + 2 ] = tmp.z;
tangents[ v * 4 + 3 ] = w;
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleVertex( indices[ j + 0 ] );
handleVertex( indices[ j + 1 ] );
handleVertex( indices[ j + 2 ] );
}
}
}
computeVertexNormals() {
const index = this.index;
const positionAttribute = this.getAttribute( 'position' );
if ( positionAttribute !== undefined ) {
let normalAttribute = this.getAttribute( 'normal' );
if ( normalAttribute === undefined ) {
normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 );
this.setAttribute( 'normal', normalAttribute );
} else {
// reset existing normals to zero
for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) {
normalAttribute.setXYZ( i, 0, 0, 0 );
}
}
const pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
const nA = new Vector3(), nB = new Vector3(), nC = new Vector3();
const cb = new Vector3(), ab = new Vector3();
// indexed elements
if ( index ) {
for ( let i = 0, il = index.count; i < il; i += 3 ) {
const vA = index.getX( i + 0 );
const vB = index.getX( i + 1 );
const vC = index.getX( i + 2 );
pA.fromBufferAttribute( positionAttribute, vA );
pB.fromBufferAttribute( positionAttribute, vB );
pC.fromBufferAttribute( positionAttribute, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
nA.fromBufferAttribute( normalAttribute, vA );
nB.fromBufferAttribute( normalAttribute, vB );
nC.fromBufferAttribute( normalAttribute, vC );
nA.add( cb );
nB.add( cb );
nC.add( cb );
normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z );
normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z );
normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z );
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) {
pA.fromBufferAttribute( positionAttribute, i + 0 );
pB.fromBufferAttribute( positionAttribute, i + 1 );
pC.fromBufferAttribute( positionAttribute, i + 2 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z );
}
}
this.normalizeNormals();
normalAttribute.needsUpdate = true;
}
}
merge( geometry, offset ) {
if ( ! ( geometry && geometry.isBufferGeometry ) ) {
console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
return;
}
if ( offset === undefined ) {
offset = 0;
console.warn(
'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. '
+ 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'
);
}
const attributes = this.attributes;
for ( const key in attributes ) {
if ( geometry.attributes[ key ] === undefined ) continue;
const attribute1 = attributes[ key ];
const attributeArray1 = attribute1.array;
const attribute2 = geometry.attributes[ key ];
const attributeArray2 = attribute2.array;
const attributeOffset = attribute2.itemSize * offset;
const length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset );
for ( let i = 0, j = attributeOffset; i < length; i ++, j ++ ) {
attributeArray1[ j ] = attributeArray2[ i ];
}
}
return this;
}
normalizeNormals() {
const normals = this.attributes.normal;
for ( let i = 0, il = normals.count; i < il; i ++ ) {
_vector$8.fromBufferAttribute( normals, i );
_vector$8.normalize();
normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z );
}
}
toNonIndexed() {
function convertBufferAttribute( attribute, indices ) {
const array = attribute.array;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array2 = new array.constructor( indices.length * itemSize );
let index = 0, index2 = 0;
for ( let i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( let j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
return new BufferAttribute( array2, itemSize, normalized );
}
//
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' );
return this;
}
const geometry2 = new BufferGeometry();
const indices = this.index.array;
const attributes = this.attributes;
// attributes
for ( const name in attributes ) {
const attribute = attributes[ name ];
const newAttribute = convertBufferAttribute( attribute, indices );
geometry2.setAttribute( name, newAttribute );
}
// morph attributes
const morphAttributes = this.morphAttributes;
for ( const name in morphAttributes ) {
const morphArray = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {
const attribute = morphAttribute[ i ];
const newAttribute = convertBufferAttribute( attribute, indices );
morphArray.push( newAttribute );
}
geometry2.morphAttributes[ name ] = morphArray;
}
geometry2.morphTargetsRelative = this.morphTargetsRelative;
// groups
const groups = this.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
geometry2.addGroup( group.start, group.count, group.materialIndex );
}
return geometry2;
}
toJSON() {
const data = {
metadata: {
version: 4.5,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;
if ( this.parameters !== undefined ) {
const parameters = this.parameters;
for ( const key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
// for simplicity the code assumes attributes are not shared across geometries, see #15811
data.data = { attributes: {} };
const index = this.index;
if ( index !== null ) {
data.data.index = {
type: index.array.constructor.name,
array: Array.prototype.slice.call( index.array )
};
}
const attributes = this.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
data.data.attributes[ key ] = attribute.toJSON( data.data );
}
const morphAttributes = {};
let hasMorphAttributes = false;
for ( const key in this.morphAttributes ) {
const attributeArray = this.morphAttributes[ key ];
const array = [];
for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {
const attribute = attributeArray[ i ];
array.push( attribute.toJSON( data.data ) );
}
if ( array.length > 0 ) {
morphAttributes[ key ] = array;
hasMorphAttributes = true;
}
}
if ( hasMorphAttributes ) {
data.data.morphAttributes = morphAttributes;
data.data.morphTargetsRelative = this.morphTargetsRelative;
}
const groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
const boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
}
clone() {
/*
// Handle primitives
const parameters = this.parameters;
if ( parameters !== undefined ) {
const values = [];
for ( const key in parameters ) {
values.push( parameters[ key ] );
}
const geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new BufferGeometry().copy( this );
}
copy( source ) {
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
// used for storing cloned, shared data
const data = {};
// name
this.name = source.name;
// index
const index = source.index;
if ( index !== null ) {
this.setIndex( index.clone( data ) );
}
// attributes
const attributes = source.attributes;
for ( const name in attributes ) {
const attribute = attributes[ name ];
this.setAttribute( name, attribute.clone( data ) );
}
// morph attributes
const morphAttributes = source.morphAttributes;
for ( const name in morphAttributes ) {
const array = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) {
array.push( morphAttribute[ i ].clone( data ) );
}
this.morphAttributes[ name ] = array;
}
this.morphTargetsRelative = source.morphTargetsRelative;
// groups
const groups = source.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
// bounding box
const boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
const boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count;
// user data
this.userData = source.userData;
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
}
BufferGeometry.prototype.isBufferGeometry = true;
const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4();
const _ray$2 = /*@__PURE__*/ new Ray();
const _sphere$3 = /*@__PURE__*/ new Sphere();
const _vA$1 = /*@__PURE__*/ new Vector3();
const _vB$1 = /*@__PURE__*/ new Vector3();
const _vC$1 = /*@__PURE__*/ new Vector3();
const _tempA = /*@__PURE__*/ new Vector3();
const _tempB = /*@__PURE__*/ new Vector3();
const _tempC = /*@__PURE__*/ new Vector3();
const _morphA = /*@__PURE__*/ new Vector3();
const _morphB = /*@__PURE__*/ new Vector3();
const _morphC = /*@__PURE__*/ new Vector3();
const _uvA$1 = /*@__PURE__*/ new Vector2();
const _uvB$1 = /*@__PURE__*/ new Vector2();
const _uvC$1 = /*@__PURE__*/ new Vector2();
const _intersectionPoint = /*@__PURE__*/ new Vector3();
const _intersectionPointWorld = /*@__PURE__*/ new Vector3();
class Mesh extends Object3D {
constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) {
super();
this.type = 'Mesh';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy( source ) {
super.copy( source );
if ( source.morphTargetInfluences !== undefined ) {
this.morphTargetInfluences = source.morphTargetInfluences.slice();
}
if ( source.morphTargetDictionary !== undefined ) {
this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );
}
this.material = source.material;
this.geometry = source.geometry;
return this;
}
updateMorphTargets() {
const geometry = this.geometry;
if ( geometry.isBufferGeometry ) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if ( morphTargets !== undefined && morphTargets.length > 0 ) {
console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
}
}
}
raycast( raycaster, intersects ) {
const geometry = this.geometry;
const material = this.material;
const matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$3.copy( geometry.boundingSphere );
_sphere$3.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) return;
//
_inverseMatrix$2.copy( matrixWorld ).invert();
_ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( _ray$2.intersectsBox( geometry.boundingBox ) === false ) return;
}
let intersection;
if ( geometry.isBufferGeometry ) {
const index = geometry.index;
const position = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
const uv = geometry.attributes.uv;
const uv2 = geometry.attributes.uv2;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
if ( index !== null ) {
// indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = index.getX( j );
const b = index.getX( j + 1 );
const c = index.getX( j + 2 );
intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = index.getX( i );
const b = index.getX( i + 1 );
const c = index.getX( i + 2 );
intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
intersects.push( intersection );
}
}
}
} else if ( position !== undefined ) {
// non-indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = j;
const b = j + 1;
const c = j + 2;
intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( position.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = i;
const b = i + 1;
const c = i + 2;
intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
intersects.push( intersection );
}
}
}
}
} else if ( geometry.isGeometry ) {
console.error( 'THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );
}
}
}
Mesh.prototype.isMesh = true;
function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {
let intersect;
if ( material.side === BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );
}
if ( intersect === null ) return null;
_intersectionPointWorld.copy( point );
_intersectionPointWorld.applyMatrix4( object.matrixWorld );
const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: _intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) {
_vA$1.fromBufferAttribute( position, a );
_vB$1.fromBufferAttribute( position, b );
_vC$1.fromBufferAttribute( position, c );
const morphInfluences = object.morphTargetInfluences;
if ( material.morphTargets && morphPosition && morphInfluences ) {
_morphA.set( 0, 0, 0 );
_morphB.set( 0, 0, 0 );
_morphC.set( 0, 0, 0 );
for ( let i = 0, il = morphPosition.length; i < il; i ++ ) {
const influence = morphInfluences[ i ];
const morphAttribute = morphPosition[ i ];
if ( influence === 0 ) continue;
_tempA.fromBufferAttribute( morphAttribute, a );
_tempB.fromBufferAttribute( morphAttribute, b );
_tempC.fromBufferAttribute( morphAttribute, c );
if ( morphTargetsRelative ) {
_morphA.addScaledVector( _tempA, influence );
_morphB.addScaledVector( _tempB, influence );
_morphC.addScaledVector( _tempC, influence );
} else {
_morphA.addScaledVector( _tempA.sub( _vA$1 ), influence );
_morphB.addScaledVector( _tempB.sub( _vB$1 ), influence );
_morphC.addScaledVector( _tempC.sub( _vC$1 ), influence );
}
}
_vA$1.add( _morphA );
_vB$1.add( _morphB );
_vC$1.add( _morphC );
}
if ( object.isSkinnedMesh ) {
object.boneTransform( a, _vA$1 );
object.boneTransform( b, _vB$1 );
object.boneTransform( c, _vC$1 );
}
const intersection = checkIntersection( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint );
if ( intersection ) {
if ( uv ) {
_uvA$1.fromBufferAttribute( uv, a );
_uvB$1.fromBufferAttribute( uv, b );
_uvC$1.fromBufferAttribute( uv, c );
intersection.uv = Triangle.getUV( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() );
}
if ( uv2 ) {
_uvA$1.fromBufferAttribute( uv2, a );
_uvB$1.fromBufferAttribute( uv2, b );
_uvC$1.fromBufferAttribute( uv2, c );
intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() );
}
const face = {
a: a,
b: b,
c: c,
normal: new Vector3(),
materialIndex: 0
};
Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal );
intersection.face = face;
}
return intersection;
}
class BoxGeometry extends BufferGeometry {
constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) {
super();
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
const scope = this;
// segments
widthSegments = Math.floor( widthSegments );
heightSegments = Math.floor( heightSegments );
depthSegments = Math.floor( depthSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let numberOfVertices = 0;
let groupStart = 0;
// build each side of the box geometry
buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
const segmentWidth = width / gridX;
const segmentHeight = height / gridY;
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
let vertexCounter = 0;
let groupCount = 0;
const vector = new Vector3();
// generate vertices, normals and uvs
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segmentHeight - heightHalf;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices.push( vector.x, vector.y, vector.z );
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals.push( vector.x, vector.y, vector.z );
// uvs
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
// counters
vertexCounter += 1;
}
}
// indices
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = numberOfVertices + ix + gridX1 * iy;
const b = numberOfVertices + ix + gridX1 * ( iy + 1 );
const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// increase counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
}
}
/**
* Uniform Utilities
*/
function cloneUniforms( src ) {
const dst = {};
for ( const u in src ) {
dst[ u ] = {};
for ( const p in src[ u ] ) {
const property = src[ u ][ p ];
if ( property && ( property.isColor ||
property.isMatrix3 || property.isMatrix4 ||
property.isVector2 || property.isVector3 || property.isVector4 ||
property.isTexture || property.isQuaternion ) ) {
dst[ u ][ p ] = property.clone();
} else if ( Array.isArray( property ) ) {
dst[ u ][ p ] = property.slice();
} else {
dst[ u ][ p ] = property;
}
}
}
return dst;
}
function mergeUniforms( uniforms ) {
const merged = {};
for ( let u = 0; u < uniforms.length; u ++ ) {
const tmp = cloneUniforms( uniforms[ u ] );
for ( const p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
}
// Legacy
const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms };
var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
/**
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
*
* fragmentShader: ,
* vertexShader: ,
*
* wireframe: ,
* wireframeLinewidth: ,
*
* lights: ,
*
* morphTargets: ,
* morphNormals:
* }
*/
class ShaderMaterial extends Material {
constructor( parameters ) {
super();
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = default_vertex;
this.fragmentShader = default_fragment;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.morphTargets = false; // set to use morph targets
this.morphNormals = false; // set to use morph normals
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv2': [ 0, 0 ]
};
this.index0AttributeName = undefined;
this.uniformsNeedUpdate = false;
this.glslVersion = null;
if ( parameters !== undefined ) {
if ( parameters.attributes !== undefined ) {
console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );
}
this.setValues( parameters );
}
}
copy( source ) {
super.copy( source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = cloneUniforms( source.uniforms );
this.defines = Object.assign( {}, source.defines );
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.lights = source.lights;
this.clipping = source.clipping;
this.morphTargets = source.morphTargets;
this.morphNormals = source.morphNormals;
this.extensions = Object.assign( {}, source.extensions );
this.glslVersion = source.glslVersion;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.glslVersion = this.glslVersion;
data.uniforms = {};
for ( const name in this.uniforms ) {
const uniform = this.uniforms[ name ];
const value = uniform.value;
if ( value && value.isTexture ) {
data.uniforms[ name ] = {
type: 't',
value: value.toJSON( meta ).uuid
};
} else if ( value && value.isColor ) {
data.uniforms[ name ] = {
type: 'c',
value: value.getHex()
};
} else if ( value && value.isVector2 ) {
data.uniforms[ name ] = {
type: 'v2',
value: value.toArray()
};
} else if ( value && value.isVector3 ) {
data.uniforms[ name ] = {
type: 'v3',
value: value.toArray()
};
} else if ( value && value.isVector4 ) {
data.uniforms[ name ] = {
type: 'v4',
value: value.toArray()
};
} else if ( value && value.isMatrix3 ) {
data.uniforms[ name ] = {
type: 'm3',
value: value.toArray()
};
} else if ( value && value.isMatrix4 ) {
data.uniforms[ name ] = {
type: 'm4',
value: value.toArray()
};
} else {
data.uniforms[ name ] = {
value: value
};
// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
}
}
if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
const extensions = {};
for ( const key in this.extensions ) {
if ( this.extensions[ key ] === true ) extensions[ key ] = true;
}
if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions;
return data;
}
}
ShaderMaterial.prototype.isShaderMaterial = true;
class Camera extends Object3D {
constructor() {
super();
this.type = 'Camera';
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
this.projectionMatrixInverse = new Matrix4();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
this.projectionMatrixInverse.copy( source.projectionMatrixInverse );
return this;
}
getWorldDirection( target ) {
if ( target === undefined ) {
console.warn( 'THREE.Camera: .getWorldDirection() target is now required' );
target = new Vector3();
}
this.updateWorldMatrix( true, false );
const e = this.matrixWorld.elements;
return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();
}
updateMatrixWorld( force ) {
super.updateMatrixWorld( force );
this.matrixWorldInverse.copy( this.matrixWorld ).invert();
}
updateWorldMatrix( updateParents, updateChildren ) {
super.updateWorldMatrix( updateParents, updateChildren );
this.matrixWorldInverse.copy( this.matrixWorld ).invert();
}
clone() {
return new this.constructor().copy( this );
}
}
Camera.prototype.isCamera = true;
class PerspectiveCamera extends Camera {
constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) {
super();
this.type = 'PerspectiveCamera';
this.fov = fov;
this.zoom = 1;
this.near = near;
this.far = far;
this.focus = 10;
this.aspect = aspect;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
}
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength( focalLength ) {
/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
}
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength() {
const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
}
getEffectiveFOV() {
return RAD2DEG * 2 * Math.atan(
Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom );
}
getFilmWidth() {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
}
getFilmHeight() {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
}
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* const w = 1920;
* const h = 1080;
* const fullWidth = w * 3;
* const fullHeight = h * 2;
*
* --A--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
if ( this.view === null ) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
}
clearViewOffset() {
if ( this.view !== null ) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
}
updateProjectionMatrix() {
const near = this.near;
let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom;
let height = 2 * top;
let width = this.aspect * height;
let left = - 0.5 * width;
const view = this.view;
if ( this.view !== null && this.view.enabled ) {
const fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
const skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
this.projectionMatrixInverse.copy( this.projectionMatrix ).invert();
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
}
PerspectiveCamera.prototype.isPerspectiveCamera = true;
const fov = 90, aspect = 1;
class CubeCamera extends Object3D {
constructor( near, far, renderTarget ) {
super();
this.type = 'CubeCamera';
if ( renderTarget.isWebGLCubeRenderTarget !== true ) {
console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' );
return;
}
this.renderTarget = renderTarget;
const cameraPX = new PerspectiveCamera( fov, aspect, near, far );
cameraPX.layers = this.layers;
cameraPX.up.set( 0, - 1, 0 );
cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
this.add( cameraPX );
const cameraNX = new PerspectiveCamera( fov, aspect, near, far );
cameraNX.layers = this.layers;
cameraNX.up.set( 0, - 1, 0 );
cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
this.add( cameraNX );
const cameraPY = new PerspectiveCamera( fov, aspect, near, far );
cameraPY.layers = this.layers;
cameraPY.up.set( 0, 0, 1 );
cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
this.add( cameraPY );
const cameraNY = new PerspectiveCamera( fov, aspect, near, far );
cameraNY.layers = this.layers;
cameraNY.up.set( 0, 0, - 1 );
cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
this.add( cameraNY );
const cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
cameraPZ.layers = this.layers;
cameraPZ.up.set( 0, - 1, 0 );
cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
this.add( cameraPZ );
const cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
cameraNZ.layers = this.layers;
cameraNZ.up.set( 0, - 1, 0 );
cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
this.add( cameraNZ );
}
update( renderer, scene ) {
if ( this.parent === null ) this.updateMatrixWorld();
const renderTarget = this.renderTarget;
const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children;
const currentXrEnabled = renderer.xr.enabled;
const currentRenderTarget = renderer.getRenderTarget();
renderer.xr.enabled = false;
const generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderer.setRenderTarget( renderTarget, 0 );
renderer.render( scene, cameraPX );
renderer.setRenderTarget( renderTarget, 1 );
renderer.render( scene, cameraNX );
renderer.setRenderTarget( renderTarget, 2 );
renderer.render( scene, cameraPY );
renderer.setRenderTarget( renderTarget, 3 );
renderer.render( scene, cameraNY );
renderer.setRenderTarget( renderTarget, 4 );
renderer.render( scene, cameraPZ );
renderTarget.texture.generateMipmaps = generateMipmaps;
renderer.setRenderTarget( renderTarget, 5 );
renderer.render( scene, cameraNZ );
renderer.setRenderTarget( currentRenderTarget );
renderer.xr.enabled = currentXrEnabled;
}
}
class CubeTexture extends Texture {
constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
format = format !== undefined ? format : RGBFormat;
super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );
// Why CubeTexture._needsFlipEnvMap is necessary:
//
// By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
// and the flag _needsFlipEnvMap controls this conversion. The flip is not required (and thus _needsFlipEnvMap is set to false)
// when using WebGLCubeRenderTarget.texture as a cube texture.
this._needsFlipEnvMap = true;
this.flipY = false;
}
get images() {
return this.image;
}
set images( value ) {
this.image = value;
}
}
CubeTexture.prototype.isCubeTexture = true;
class WebGLCubeRenderTarget extends WebGLRenderTarget {
constructor( size, options, dummy ) {
if ( Number.isInteger( options ) ) {
console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' );
options = dummy;
}
super( size, size, options );
options = options || {};
this.texture = new CubeTexture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
this.texture._needsFlipEnvMap = false;
}
fromEquirectangularTexture( renderer, texture ) {
this.texture.type = texture.type;
this.texture.format = RGBAFormat; // see #18859
this.texture.encoding = texture.encoding;
this.texture.generateMipmaps = texture.generateMipmaps;
this.texture.minFilter = texture.minFilter;
this.texture.magFilter = texture.magFilter;
const shader = {
uniforms: {
tEquirect: { value: null },
},
vertexShader: /* glsl */`
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include
#include
}
`,
fragmentShader: /* glsl */`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`
};
const geometry = new BoxGeometry( 5, 5, 5 );
const material = new ShaderMaterial( {
name: 'CubemapFromEquirect',
uniforms: cloneUniforms( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
side: BackSide,
blending: NoBlending
} );
material.uniforms.tEquirect.value = texture;
const mesh = new Mesh( geometry, material );
const currentMinFilter = texture.minFilter;
// Avoid blurred poles
if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter;
const camera = new CubeCamera( 1, 10, this );
camera.update( renderer, mesh );
texture.minFilter = currentMinFilter;
mesh.geometry.dispose();
mesh.material.dispose();
return this;
}
clear( renderer, color, depth, stencil ) {
const currentRenderTarget = renderer.getRenderTarget();
for ( let i = 0; i < 6; i ++ ) {
renderer.setRenderTarget( this, i );
renderer.clear( color, depth, stencil );
}
renderer.setRenderTarget( currentRenderTarget );
}
}
WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
const _sphere$2 = /*@__PURE__*/ new Sphere();
const _vector$7 = /*@__PURE__*/ new Vector3();
class Frustum {
constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) {
this.planes = [ p0, p1, p2, p3, p4, p5 ];
}
set( p0, p1, p2, p3, p4, p5 ) {
const planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
}
copy( frustum ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
}
setFromProjectionMatrix( m ) {
const planes = this.planes;
const me = m.elements;
const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
}
intersectsObject( object ) {
const geometry = object.geometry;
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$2.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );
return this.intersectsSphere( _sphere$2 );
}
intersectsSprite( sprite ) {
_sphere$2.center.set( 0, 0, 0 );
_sphere$2.radius = 0.7071067811865476;
_sphere$2.applyMatrix4( sprite.matrixWorld );
return this.intersectsSphere( _sphere$2 );
}
intersectsSphere( sphere ) {
const planes = this.planes;
const center = sphere.center;
const negRadius = - sphere.radius;
for ( let i = 0; i < 6; i ++ ) {
const distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
}
intersectsBox( box ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
const plane = planes[ i ];
// corner at max distance
_vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
_vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
_vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
if ( plane.distanceToPoint( _vector$7 ) < 0 ) {
return false;
}
}
return true;
}
containsPoint( point ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
clone() {
return new this.constructor().copy( this );
}
}
function WebGLAnimation() {
let context = null;
let isAnimating = false;
let animationLoop = null;
let requestId = null;
function onAnimationFrame( time, frame ) {
animationLoop( time, frame );
requestId = context.requestAnimationFrame( onAnimationFrame );
}
return {
start: function () {
if ( isAnimating === true ) return;
if ( animationLoop === null ) return;
requestId = context.requestAnimationFrame( onAnimationFrame );
isAnimating = true;
},
stop: function () {
context.cancelAnimationFrame( requestId );
isAnimating = false;
},
setAnimationLoop: function ( callback ) {
animationLoop = callback;
},
setContext: function ( value ) {
context = value;
}
};
}
function WebGLAttributes( gl, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
const buffers = new WeakMap();
function createBuffer( attribute, bufferType ) {
const array = attribute.array;
const usage = attribute.usage;
const buffer = gl.createBuffer();
gl.bindBuffer( bufferType, buffer );
gl.bufferData( bufferType, array, usage );
attribute.onUploadCallback();
let type = 5126;
if ( array instanceof Float32Array ) {
type = 5126;
} else if ( array instanceof Float64Array ) {
console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );
} else if ( array instanceof Uint16Array ) {
if ( attribute.isFloat16BufferAttribute ) {
if ( isWebGL2 ) {
type = 5131;
} else {
console.warn( 'THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.' );
}
} else {
type = 5123;
}
} else if ( array instanceof Int16Array ) {
type = 5122;
} else if ( array instanceof Uint32Array ) {
type = 5125;
} else if ( array instanceof Int32Array ) {
type = 5124;
} else if ( array instanceof Int8Array ) {
type = 5120;
} else if ( array instanceof Uint8Array ) {
type = 5121;
} else if ( array instanceof Uint8ClampedArray ) {
type = 5121;
}
return {
buffer: buffer,
type: type,
bytesPerElement: array.BYTES_PER_ELEMENT,
version: attribute.version
};
}
function updateBuffer( buffer, attribute, bufferType ) {
const array = attribute.array;
const updateRange = attribute.updateRange;
gl.bindBuffer( bufferType, buffer );
if ( updateRange.count === - 1 ) {
// Not using update ranges
gl.bufferSubData( bufferType, 0, array );
} else {
if ( isWebGL2 ) {
gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
array, updateRange.offset, updateRange.count );
} else {
gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );
}
updateRange.count = - 1; // reset range
}
}
//
function get( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
return buffers.get( attribute );
}
function remove( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
const data = buffers.get( attribute );
if ( data ) {
gl.deleteBuffer( data.buffer );
buffers.delete( attribute );
}
}
function update( attribute, bufferType ) {
if ( attribute.isGLBufferAttribute ) {
const cached = buffers.get( attribute );
if ( ! cached || cached.version < attribute.version ) {
buffers.set( attribute, {
buffer: attribute.buffer,
type: attribute.type,
bytesPerElement: attribute.elementSize,
version: attribute.version
} );
}
return;
}
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
const data = buffers.get( attribute );
if ( data === undefined ) {
buffers.set( attribute, createBuffer( attribute, bufferType ) );
} else if ( data.version < attribute.version ) {
updateBuffer( data.buffer, attribute, bufferType );
data.version = attribute.version;
}
}
return {
get: get,
remove: remove,
update: update
};
}
class PlaneGeometry extends BufferGeometry {
constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) {
super();
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
const width_half = width / 2;
const height_half = height / 2;
const gridX = Math.floor( widthSegments );
const gridY = Math.floor( heightSegments );
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
const segment_width = width / gridX;
const segment_height = height / gridY;
//
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segment_height - height_half;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segment_width - width_half;
vertices.push( x, - y, 0 );
normals.push( 0, 0, 1 );
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
}
}
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = ix + gridX1 * iy;
const b = ix + gridX1 * ( iy + 1 );
const c = ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = ( ix + 1 ) + gridX1 * iy;
indices.push( a, b, d );
indices.push( b, c, d );
}
}
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
}
var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";
var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";
var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
var begin_vertex = "vec3 transformed = vec3( position );";
var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = - mvPosition.z;\n#endif";
var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";
var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";
var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";
var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), rawDiffuseColor, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), rawDiffuseColor, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";
var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat specularRoughness;\n\tvec3 specularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";
var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
var transmission_fragment = "#ifdef USE_TRANSMISSION\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttotalTransmission *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSNMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition.xyz / vWorldPosition.w;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n\tfloat ior = ( 1.0 + 0.4 * reflectivity ) / ( 1.0 - 0.4 * reflectivity );\n\tvec3 f0 = vec3( pow( ior - 1.0, 2.0 ) / pow( ior + 1.0, 2.0 ) );\n\tvec3 f90 = vec3( 1.0 );\n\tvec3 f_transmission = totalTransmission * getIBLVolumeRefraction(\n\t\tnormal, v, viewDir, roughnessFactor, diffuseColor.rgb, f0, f90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance);\n\tdiffuseColor.rgb = mix( diffuseColor.rgb, f_transmission, totalTransmission );\n#endif";
var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec4 vWorldPosition;\n\tvec3 getVolumeTransmissionRay(vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix) {\n\t\tvec3 refractionVector = refract(-v, normalize(n), 1.0 / ior);\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length(vec3(modelMatrix[0].xyz));\n\t\tmodelScale.y = length(vec3(modelMatrix[1].xyz));\n\t\tmodelScale.z = length(vec3(modelMatrix[2].xyz));\n\t\treturn normalize(refractionVector) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness(float roughness, float ior) {\n\t\treturn roughness * clamp(ior * 2.0 - 2.0, 0.0, 1.0);\n\t}\n\tvec3 getTransmissionSample(vec2 fragCoord, float roughness, float ior) {\n\t\tfloat framebufferLod = log2(transmissionSamplerSize.x) * applyIorToRoughness(roughness, ior);\n\t\treturn texture2DLodEXT(transmissionSamplerMap, fragCoord.xy, framebufferLod).rgb;\n\t}\n\tvec3 applyVolumeAttenuation(vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance) {\n\t\tif (attenuationDistance == 0.0) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log(attenuationColor) / attenuationDistance;\n\t\t\tvec3 transmittance = exp(-attenuationCoefficient * transmissionDistance);\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec3 getIBLVolumeRefraction(vec3 n, vec3 v, vec3 viewDir, float perceptualRoughness, vec3 baseColor, vec3 f0, vec3 f90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness, vec3 attenuationColor, float attenuationDistance) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay(n, v, thickness, ior, modelMatrix);\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4(refractedRayExit, 1.0);\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec3 transmittedLight = getTransmissionSample(refractionCoords, perceptualRoughness, ior);\n\t\tvec3 attenuatedColor = applyVolumeAttenuation(transmittedLight, length(transmissionRay), attenuationColor, attenuationDistance);\n\t\tfloat NdotV = saturate(dot(n, viewDir));\n\t\tvec2 brdf = integrateSpecularBRDF(NdotV, perceptualRoughness);\n\t\tvec3 specularColor = f0 * brdf.x + f90 * brdf.y;\n\t\treturn (1.0 - specularColor) * attenuatedColor * baseColor;\n\t}\n#endif";
var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}";
var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
var cube_frag = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}";
var cube_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}";
var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}";
var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}";
var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}";
var equirect_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}";
var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}";
var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}";
var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include